
Effective Ship Trajectory Imputation with Multiple
Coastal Cameras

Song Wu∗†, Kristian Torp†, Alexandros Troupiotis-Kapeliaris‡, Dimitris Zissis‡, Esteban Zimányi∗, Mahmoud Sakr∗
∗Université libre de Bruxelles, Brussels, Belgium

†Aalborg University, Aalborg, Denmark
‡University of the Aegean, Syros, Greece

∗{song.wu, esteban.zimanyi, mahmoud.sakr}@ulb.be, †{songw, torp}@cs.aau.dk, ‡{alextroupi, dzissis}@aegean.gr

Abstract—The ship trajectories collected by the Automatic
Identification System (AIS) are widely used in maritime applica-
tions. However, a significant issue with AIS data is that large AIS
gaps occur. Existing trajectory imputation methods for AIS data
have three main limitations: (1) the temporal aspect is ignored;
(2) the methods fall short when dealing with complex ship
movements; (3) the common-route assumption does not always
hold. To overcome these limitations, we propose TrajImpMC, a
tracking-based framework that uses polygon-based ship location
estimates from multiple cameras to impute large AIS gaps.
TrajImpMC combines speed constraints and Kalman filters, and
can return imputed trajectories that contain both spatial and
temporal information. Extensive experiments are conducted on
real datasets. In terms of the quality of the imputed trajectories,
TrajImpMC improves the RMSE errors by at least one order
of magnitude over two existing state-of-the-art AIS imputation
methods. In addition, a visual comparison shows that the imputed
trajectories of TrajImpMC align very well with the real ship
trajectories during AIS gaps. The code for this paper is available
at: https://github.com/songwu0001/TrajImpMC.

I. INTRODUCTION

In the maritime domain, the Automatic Identification Sys-
tem (AIS) has become the most popular technology for ship
tracking [1]. AIS allows ships to broadcast their location,
speed, and navigational information to nearby ships, terrestrial
stations, or satellites. In the past two decades, the extensive
deployment of AIS worldwide has led to the collection of huge
amounts of ship trajectory data. Such data plays a critical
and indispensable role in numerous applications, such as
constructing a maritime transport network [2], [3], estimating
CO2 emissions from ships [4], [5], and detecting fishing
activities [6], [7].

However, despite its immense application value, a signifi-
cant issue with AIS data is the large spatial and/or temporal
gaps that often occur [8], [9]. These gaps result in consecutive
AIS points that span a long spatial distance up to several
kilometers or have a long time interval up to hours or even
days. For example, Fig. 1 illustrates a trajectory in which a
5-hour gap exists. Large AIS gaps such as this pose challenges
to applications whose accuracy is based on high-quality AIS
trajectories [8], such as collision avoidance and trajectory
prediction.

To handle AIS gaps, many trajectory imputation methods
have been proposed to estimate the missing ship movement

gap start

gap end

10 km

Fig. 1. A real trajectory that starts and ends at the Skagen harbor in Denmark.
The two red circles show where a 5-hour gap exists, and the whereabouts of
this ship during the gap period are thus unknown from AIS data.

during an AIS gap [8]–[15]. These methods handle AIS gaps
mainly from two perspectives: numerical analysis and histor-
ical data-driven [8]. Numerical analysis methods fill a gap
either by applying well-established mathematical formulas,
e.g., Lagrange interpolation [10] and cubic spline interpola-
tion [12], or by considering the ship’s kinematic information
such as speed and acceleration [11]. Although these methods
are efficient and easy to implement, they do not take into
account geographic context. Therefore, they are prone to return
unrealistic trajectories such as those that cross land [8]. In
contrast, data-driven methods fill AIS gaps by discovering
movement patterns from massive historical AIS data [8], [9],
[13]–[15], and their interpolated trajectories conform better
with reality.

Despite these advances, there are three main limitations for
existing trajectory imputation methods.

1) The temporal aspect is ignored. Most existing methods
focus only on the spatial path during an AIS gap, and inter-
polated trajectories thus lack time information. However,
time information plays a key role in certain applications
such as harbor surveillance [16]. Also, a ship may stop
during the gap period, particularity in certain areas. In such
cases, restoring time information is necessary to know if
a ship is moving or not at any given time during the gap.

https://github.com/songwu0001/TrajImpMC


Last but not least, existing methods are mostly suited for
imputing short-term gaps rather than large gaps like the
one in Fig. 1.

2) Existing methods fall short when dealing with complex ship
movements. Complex movements occur when a ship per-
forms frequent maneuvers and exhibits movement patterns
sufficiently different from the common ones. In such cases,
the real movement of the ship during the gap cannot be
accurately recovered by existing methods.

3) The common-route assumption does not always hold [14].
Unlike vehicle trajectories constrained by road networks,
ships can move freely in the open sea, resulting in numer-
ous ways to move between locations. This characteristic
may break the common-route assumption in some data-
driven methods, making it difficult or even impossible to
find the most representative route to fill AIS gaps.

To overcome these limitations, a promising method is to
perform data fusion with other sensors. The idea is that the
ship locations during an AIS gap can still be monitored by
other sensors. As far as we know, only few studies exist along
this line of research. For example, the method proposed in
[13] fills AIS gaps by detecting ship locations from Sentinel
satellite images [17], [18]. However, these satellites have a
revisit time of 2 to 3 days in high-coverage areas [13]. There-
fore, the sparsity of satellite imagery restricts the application
of this method in a large scale.

In this work, we explore the possibility of filling large
AIS gaps by using data from coastal cameras, which are also
widely used for monitoring ship traffic [19], [20]. Specifically,
the idea is that by processing video data from multiple
cameras, time-aware ship location estimates can be obtained
for ships appearing in camera views. Since there can be many
ships in camera views, the challenging task is how to identify
the location estimates belonging to the ship that exhibits a
large AIS gap. To this end, our contributions are as follows.
• We propose a framework named TrajImpMC (Trajectory

Imputation using Multiple Cameras). Using ship location
estimates from multiple cameras, TrajImpMC transforms
the trajectory imputation problem into a trajectory tracking
problem. Next, TrajImpMC employs ship speed constraints
and adapts Kalman filters to recover the most likely ship tra-
jectory during a large AIS gap, and this trajectory contains
both spatial and temporal information.

• Extensive experiments are conducted on real datasets to
compare TrajImpMC with two state-of-the-art trajectory
imputation methods for AIS data. Results show that Tra-
jImpMC improves the RMSE error by at least one order
of magnitude. Furthermore, visual analysis shows that the
imputed trajectories by TrajImpMC align very well with the
real ship trajectories during AIS gaps.

II. RELATED WORK

Existing trajectory imputation methods for AIS data fall into
three categories:
• Numerical analysis methods [10]–[12], [21]. These methods

perform trajectory imputation by applying well-established

mathematical formulas or by utilizing ship kinematic in-
formation. One common method in this category is the
widely used linear interpolation [21]. This method assumes
a constant speed during the gap and uses a straight line to
fill the gap. Other studies use more advanced mathematical
tools to fill the AIS gaps, such as Lagrange interpolation
[10] and cubic spline interpolation [12]. In contrast, the
study in [11] fills AIS gaps using kinematic information.
In [11], the variation of acceleration during the gap is
first modeled, then the variation of ship speed is derived
from the acceleration function. Finally, the ship locations
during the gap are derived from the speed function. The
advantage of numerical methods is that they are efficient
and easy to implement. However, since they do not take into
account environmental restrictions, these methods tend to
return unrealistic trajectories that may cross land [8]. Also,
these methods fall short when dealing with complex ship
movements.

• Data-driven methods [8], [9], [13]–[15]. Methods in this cat-
egory fill AIS gaps by discovering movement patterns from
massive historical AIS data. These methods use historical
data in different ways.
– Feature trajectory-based methods. The study in [14] pro-

poses an algorithm called AISClean which fills an AIS
gap by manipulating the most representative historical
trajectory that passes near the gap locations. AISClean
first retrieves a set of potential trajectories around the
gap. Next, the potential trajectory that has the smallest
Dynamic Time Warping (DTW) distance to the other
potential trajectories is selected as the feature trajectory.
Finally, an AIS gap is filled by translating the feature
trajectory to match the gap.

– Graph-based methods. These methods capture movement
patterns by building a transition graph from historical
AIS data [8], [13]. The nodes in this graph are either
raw AIS points [8] or equal-sized spatial cells [13].
In [8], the edges are created between AIS points that
satisfy both a neighborhood criterion and a direction
criterion. In contrast, edges in [13] are created between
neighboring cells and edge weights reflect the spatial
distance and transition probabilities between cells. To fill
a gap between a and b, both methods in [8] and [13] use
the transition graph and the A* algorithm to compute the
shortest path between a and b.

– Deep learning-based methods. Several studies have also
emerged that fill AIS gaps by using deep-learning tech-
nology, which has gained great success in recent years.
For example, the study in [15] employs the convolutional
network U-Net [22] for ship trajectory reconstruction,
and the study in [9] focuses on long-term ship trajectory
imputation and proposes a physics-guided probabilistic
diffusion model to fill AIS gaps.

• Methods based on data fusion. When AIS signal is lost,
it is likely that ship movement can be monitored by other
types of sensors, which play a complementary role to AIS.



Therefore, data fusion with other sensors can help determine
the missing ship movement during an AIS gap. However,
data fusion is a challenging task and only few studies
exist. For example, the study in [13] fills AIS gaps by
fusing with images captured by the Sentinel satellites [17],
[18]. First, ship targets in the satellite images are detected.
Then real-world locations of these targets are estimated.
Next, the identities of these targets are determined by
correlating targets with AIS data using the nearest-neighbor
principle. However, the sparsity of satellite data restricts the
application of this method at a large scale.

III. PROBLEM DEFINITION

Definition 1. (Trajectory). A trajectory T = {p1, · · · , pn} is
a sequence of timestamped AIS points ordered by time. Each
AIS point pi (1 ≤ i ≤ n) is a quadruple (t, loc, sog, cog),
where pi.t is the timestamp, pi.loc is the longitude and
latitude, pi.sog is the speed over ground, and pi.cog is the
course over ground of this point.

Definition 2. (Large AIS Gap). Given a trajectory T , a large
AIS gap is defined as any two consecutive AIS points gapstart

and gapend in T satisfying:

gapend.t− gapstart.t ≥ θt

where θt is a time threshold, and it can be adjusted based
on the real application requirements. Clearly, gapstart is the
last point before a gap and gapend is the first point after a gap.
Hereafter, gapstart.loc and gapend.loc are also referred to as
“gap locations”; gapend.t − gapstart.t is referred to as “gap
duration”; and the Euclidean distance between gapstart.loc
and gapend.loc is referred to as “gap distance”.

Problem Definition. Given a large AIS gap, trajectory
imputation aims to recover the missing ship movement during
this gap by adding points between gapstart and gapend.

IV. METHODOLOGY

To overcome the limitations in existing trajectory imputation
methods for AIS data, this work combines the ship location
estimation method proposed in [23] and Kalman filter-based
trajectory tracking [24].

Given multiple coastal cameras monitoring an area of inter-
est, the method in [23] estimates the locations of ships inside
the area by processing images captured by these cameras.
Since there is no one-to-one correspondence between discrete
pixel coordinates and continuous spatial (longitude/latitude)
coordinates, the algorithm in [23] returns a set of polygons
rather than points as the estimated ship locations, and these
polygons do not share their interiors. In this way, the actual
locations of most ships within the area are contained in these
polygons.

Based on the study in [23], this work transforms the tra-
jectory imputation problem into a trajectory tracking problem
during an AIS gap. The main idea is to use the polygon-based
ship location estimates from cameras as extra knowledge.
It can be inferred that a ship s must visit a sequence of
polygons during the gap if s stays inside the monitored region

all the time. The key points here are how to identify the
sequence of polygons visited by s and from this polygon
sequence how to construct a realistic trajectory that connects
gapstart and gapend. Fig. 2 illustrates the overall design of
our proposed solution, which is composed of four steps: (1)
Refinement of tracking space; (2) Kalman filter-based polygon
sequence selection; (3) Shortest-path computation over the
polygon sequence; and (4) Timestamp assignment. These steps
are detailed as follows.

Algorithm 1: RefineTrackingSpace
Input: gap: defines the imputation task

V : the maximum ship speed
∆t: the time step size

Output: polyrefi: the set of polygons after refinement
at timestamps determined by ∆t

1 polyrefi ← dict()
2 ts← {}
3 prev ← {gapstart.loc}
4 currT ← gapstart.t+∆t
5 while currT < gapend.t do
6 polys← ship location estimates at currT
7 polysMP ← multi-pixel polygons in polys
8 now ← {}
9 foreach p1 ∈ polysMP do

10 if ∃p2 ∈ prev : disteuc(p1, p2) ≤ V ∗∆t then
11 append p1 to now
12 polyrefi[currT ]← now
13 prev ← now
14 append currT to ts
15 currT ← currT +∆t
16 next← {gapend.loc}
17 nextT ← gapend.t
18 for t ∈ reverse(ts) do
19 polys← polyrefi[t]
20 polys′ ← {}
21 foreach p1 ∈ polys do
22 ∆t′ ← nextT − t
23 if ∃p2 ∈ next : disteuc(p1, p2) ≤ V ∗∆t′ then
24 append p1 to polys′

25 polyrefi[t]← polys′

26 next← polys′

27 nextT ← t
28 return polyrefi

A. Refinement of Tracking Space

Combining the polygon-based ship location estimates from
cameras over time gives the whole tracking space. However,
not all polygons are important for filling the AIS gap of a given
ship s. First, limited by its maximum movement capabilities,
s is unable to reach some polygons. Second, trajectory impu-
tation implies that s should finally reach gapend, thus further
limiting the polygons that s can visit over time. Therefore,
this refinement step keeps only polygons that meet these two



5 km

gap start: 2023-09-18 143355

gap end: 2023-09-18 152422

(a)

Single Polygon Candidates
Multiple Polygon Candidates

200 m

2023-09-18 143842

2023-09-18 144610

2023-09-18 151908

(b)

200 m

(c)

200 m

(d)
200 m

real trajectory
imputed trajectory

(e)

2:51 pm 3:11 pm
t

0

10

20

30

40

50

60

70

Eu
cli

de
an

 d
ist

an
ce

 (m
)

(f)
Fig. 2. Workflow of the proposed solution. (a) Example of a multi-camera monitoring scenario and an AIS gap. The grey polygon depicts the area of
interest which is visible by both cameras. The ship is assumed to stay inside this polygon during the gap; (b) Refinement of tracking space. The possible
ship locations over time are constructed using speed constraints and location estimates (as polygons) from multiple cameras. Close-up is shown for three
randomly-chosen timestamps at which there are multiple choices for the ship location; (c) Kalman filter-based polygon sequence selection. Kalman filter
is used to select the most probable sequence of polygons visited by a ship during an AIS gap. Here, the obtained sequence is shown in blue and the red
linestring is the estimated ship trajectory by Kalman filter. Note that this linestring may not cross all of the blue polygons. (d) Shortest path computation
over the polygon sequence. To make the imputed trajectory smooth and realistic, the shortest path is computed that begins at the gap start, visits the sequence
of polygons in order, and finally reaches the gap end. (e) Timestamp assignment and comparison with the real ship trajectory. The Fréchet distance
between the real trajectory and the imputed trajectory is 48.8 m, showing that the imputed trajectory is very close to the real trajectory. (f) Distances between
the imputed trajectory points and the real trajectory points over time.

considerations. To achieve this, a speed-threshold method is
applied. Algorithm 1 lists the pseudo-code.

Note that in this work, we apply an enhanced version of the
algorithm proposed in [23] where the predicate of whether
a pixel set is contained in another pixel set is not checked.
Removing this check guarantees that the location of any ship
in the monitored area is contained in one of the returned
polygons.

Algorithm 1 consists of a forward pass and a backward pass.
The input parameter ∆t specifies the time granularity. The
forward pass (lines#3-15) uses the maximum speed constraint
to remove polygons that cannot be reached by a ship. Since
this work uses a multi-camera scenario, we assume that the
ship during an AIS gap is always visible to at least two
cameras (see the grey polygon in Fig. 2a). This assumption
is also motivated by the finding that using multiple cameras
can improve the accuracy of location estimation by an order of

magnitude than using only one camera [23]. Therefore, only
polygons created by multiple pixels are taken into account in
the forward pass (line#7). Note that in line#10, disteuc denotes
the Euclidean distance. Next, the backward pass (lines#16-27)
further removes polygons that do not lead a ship to gapend

in the end. Finally, polyrefi is returned. It contains all the
polygons that can be visited by a ship during an AIS gap.

B. Kalman filter-based Polygon Sequence Selection
In this step, the trajectory imputation problem is treated

as a single-target trajectory tracking problem, where polyrefi

gives all the tracking possibilities. Since there can be multiple
choices of polygons at a timestamp (see the close-up in
Fig. 2b), the next challenge is how to comply with movement
characteristics and identify the most likely polygon visited.
To this end, this step employs the Kalman filter tracking to
identify the most likely sequence of polygons visited by a
ship during its gap.



Kalman filter [25] is a renowned state estimation algorithm
for linear Gaussian systems. The algorithm is widely used for
noise calibration [26] and robust tracking [27], [28]. Generally,
the Kalman filter can optimally estimate the true states under-
lying a sequence of measurements. Measurements are usually
the reported locations by sensors, e.g., GPS locations, which
can be noisy and inaccurate. True states are the real locations
(and/or speed, heading) of a moving object.

The formulation of a Kalman filter requires a motion model
and a sensor model. The motion model specifies how the
true state transits from one to another, and the sensor model
specifies how a measurement is generated from the true
state. Based on this, the Kalman filter works by recursively
alternating between a prediction step and an update step. In
the prediction step, a Kalman filter uses the motion model to
predict the state at the current time step t based on the previous
state at t −∆t. In the update step, the predicted state at t is
updated based on a measurement, and this final updated state
is considered to be the most likely true state at t. For more
details on Kalman filter, we refer readers to [25], [29].

In this work, the polygon candidates at a timestamp cannot
be directly used as measurements for a Kalman filter, because
each polygon contains infinitely many locations that can be
used as measurements. To solve this issue, we resort to the
covariance matrix in a Kalman filter, which represents the level
of uncertainty around a predicted location [26]. Therefore, we
generate for each polygon the most probable measurement
w.r.t. the predicted location and the covariance matrix. Two
cases can be distinguished here. If the predicted location
is inside a polygon, the measurement is then the predicted
location itself. Otherwise, the point on the boundary of the
polygon that has the smallest Mahalanobis distance is selected
as the measurement. Fig. 3 illustrates an example of this
technique.

By generating measurements from candidate polygons at
each time step, a Kalman filter can now be created and
run to select the most likely sequence of polygons visited.
Algorithm 2 lists the pseudo code. A Kalman filter kf is
initialized using the information in gapstart (line#2). Then
in each iteration, kf selects the polygon as follows:
1) The speed threshold is used again (lines#5-6) to determine

eligible polygons and the results are stored in cand
′
.

2) Prediction is made for the current time step, and measure-
ments are created for polygons in candi

′
(lines#7-14).

3) The best measurement is chosen using the Mahalanobis
distance, and it is used to update kf (lines#15-16).

4) The polygon associated with the best measurement is
recorded (line#18).

Fig. 2c shows the selected sequence of polygons in blue and
the Kalman-filtered ship trajectory in red. One can observe
that some red trajectory points fall outside the blue polygons;
Therefore, this Kalman-filtered trajectory is not suitable to be
returned as the final imputed trajectory. It is hypothesized that
the imputed trajectory should pass all the selected polygons.
To comply with this and make the imputed trajectory more
smooth and realistic, in the next step we resort to compute

the updated 
location at 𝑡

the predicted 
location at 𝑡 + ∆𝑡

𝑙𝑜𝑛

𝑙at

Fig. 3. Measurement generation from polygons. The left solid dot shows
the updated ship location by a Kalman filter at time t, and the right solid dot
shows the predicted ship location at t+∆t. The concentric ellipses depict the
associated uncertainty covariance matrix with this predicted location, where
inner ellipses have a higher probability than outer ellipses. Suppose there are
three polygon candidates (in blue) at t + ∆t, then each polygon generates
its most probable measurement (shown as hollow dots) w.r.t. the predicted
location and the covariance matrix. In this example, the red hollow dot is the
measurement used to update the predicted location, and the rightmost polygon
will be considered to be the polygon visited by the ship at t+∆t.

the shortest path that visits a sequence of polygons in a given
order.

Algorithm 2: PolygonSelection
Input: gap: defines the imputation task

polyrefi: polygon candidates over time
V : the maximum ship speed
∆t: the time step size

Output: polys: the selected sequence of polygons
1 polys← dict()
2 kf ← InitializeKalmanFilter(gapstart)
3 prev ← gapstart.loc
4 for t ∈ polyrefi do
5 cand← polyrefi[t]
6 cand′ ← {e ∈ cand | disteuc(e, prev) ≤ V ∗∆t}
7 locp ← kf.pred(t)
8 measurements← {}
9 foreach poly ∈ cand′ do

10 if poly.contains(locp) then
11 locd ← locp

12 else
13 locd ← argmine∈∂poly dist

mah(e, locp)
14 append (locd, poly) to measurements
15 e← argmine∈measurements dist

mah(e.locd, locp)
16 kf.update(t, e.locd)
17 prev ← e.poly
18 polys[t]← e.poly
19 return polys

C. Shortest-Path Computation over the Polygon Sequence

The shortest path we compute is well-studied in the field
of computational geometry [30], [31] and referred to as
the Touring Polygons Problem. When polygons are convex
and disjoint, the shortest path can be efficiently computed



using a data structure called Last Step Shortest Path Map
(LSSPM) [30]. When the convex polygons can intersect, the
time complexity of the solution increases by a factor of k
compared to the non-intersecting case, where k is the number
of polygons in the sequence [30], [31].

Algorithm 3 lists the pseudo code of this step. Note that a
ship may take several time steps to pass a polygon; therefore,
in line#1 we first extract the sequence of different polygons
(polys′) using run-length encoding. In our scenario, the poly-
gons are convex, but they are not necessarily disjoint because
they may share part of their boundaries, see Fig. 2c. Therefore,
a negative buffer technique is applied in lines#2-11 to ensure
polygons are disjoint. This technique has two benefits: (1)
lower time complexity for building the LSSPM ; and (2)
the shortest path is guaranteed to pass through the interior of
the polygons rather than bounce occasionally at the polygon
boundary. Note that just a small negative buffer size is enough
for this technique; otherwise, the ‘shortest’ property of the
path may be compromised. Next, the LSSPM data structure
is built (line#12), and the shortest path can be computed by
issuing a query against LSSPM (line#13). For details on
LSSPM , we refer readers to [30]. Finally, the shortest path
is returned along with times which records the time period a
ship is within a polygon in polys′.

Algorithm 3: ShortestPathOverPolygons
Input: gap: defines the imputation task

polys: the selected sequence of polygons
bufneg: the negative buffer size

Output: path: the shortest path
times: the number of consecutive

occurrences of polygons in polys
1 polys′, times← RunLengthEncoding(polys)
2 polys′′ ← {}
3 foreach poly ∈ polys′ do
4 buf ′ ← bufneg

5 while true do
6 polyshrinked ← Buffer(poly, buf ′)
7 if polyshrinked is not empty then
8 append polyshrinked to polys′′

9 break
10 else
11 buf ′ ← buf ′/2
12 LSSPM ← BuildLSSPM(gapstart.loc, polys′′)
13 path← LSSPM.query(gapend.loc)
14 return path, times

D. Timestamp Assignment

This last step adds the time information to the imputed
trajectory points, and Algorithm 4 lists the pseudo code. On
one hand, the times given by Algorithm 3 records the number
of time steps that the ship uses to pass each polygon. On
the other hand, the theory in [30] states that a point in the
path given by Algorithm 3 is the very first point at which the

Algorithm 4: TimestampAssignment
Input: gap: defines the imputation task

path: the shortest path over polygons
times: the number of time steps for polygons
∆t: the time step size

Output: traj: the imputed spatio-temporal trajectory
1 traj ← {gapstart}
2 ts← gapstart.t
3 foreach idx, p ∈ enumerate(path) do
4 ts← ts+∆t
5 append [ts, p] to traj
6 if times[idx] > 1 then
7 if idx+ 1 < len(path) then
8 pnext ← path[idx+ 1]
9 else

10 pnext ← gapend.loc
11 k ← times[idx]− 1
12 pointsmiddle ← Lint(p, pnext, k)
13 foreach pmiddle ∈ pointsmiddle do
14 ts← ts+∆t
15 append [ts, pmiddle] to traj
16 append gapend to traj
17 return traj

shortest path enters the corresponding polygon. Therefore, if
the ship uses more than one time step to pass a polygon, say
k+1, then k additional evenly distributed points are generated
using linear interpolation (Lint in line#12) between the entry
point of this polygon and its successor on the path. In this
way, we can return a fine-grained spatio-temporal trajectory.

V. EXPERIMENTS

This section conducts experiments to compare different
algorithms for imputing large AIS gaps. Our algorithm Tra-
jImpMC is implemented in Python and is available on Github.1

The experiments were run on a Linux server equipped with
256 GB RAM and AMD Epyc Genoa CPU at 3.7GHz.

A. Datasets and Pre-processing

Datasets. In the experiments, the AIS data published by
the Danish Maritime Authority is used.2 This data is freely
available and used in many studies [5], [7], [9], [32], [33].
Specifically, the region of interest is selected to be around
Skagen, which is the north tip of Denmark. This region is
chosen because it is one of the busiest water channels in the
world, mixing traffic that transits between the North Sea and
the Baltic Sea or between Norway and Denmark. As a result,
ships in this region exhibit relatively complex movements,
making the trajectory imputation task more challenging.

In this work, two multi-camera settings are designed:
InsideSkagen and OutsideSkagen. The InsideSkagen setting

1https://github.com/songwu0001/TrajImpMC
2https://web.ais.dk/aisdata/

https://github.com/songwu0001/TrajImpMC
https://web.ais.dk/aisdata/


TABLE I. Configuration of the two multi-camera settings in the experiments. Note that cam.θH is the horizontal orientation of a camera.

name cam1.θH cam2.θH cam3.θH (cam1.lon, cam1.lat) (cam2.lon, cam2.lat) (cam3.lon, cam3.lat)
InsideSkagen 90◦ 160◦ - (10.460241, 57.662182) (10.622148, 57.751757) -
OutsideSkagen 0◦ 14◦ 34◦ (10.649634, 57.746461) (10.623467, 57.751201) (10.594881, 57.750756)

5 km

(a) InsideSkagen
5 km

(b) OutsideSkagen
Fig. 4. Two multi-camera settings are used in the experiments. The grey
polygon represents the area that can be monitored by at least two cameras.

monitors the shipping traffic in the anchorage area of the Sk-
agen harbor, whereas the OutsideSkagen setting monitors the
shipping traffic just outside Skagen. Fig. 4 depicts the settings,
in which the grey polygon represents the area that is visible by
at least two cameras. Table I shows the configuration of these
two multi-camera settings. The configuration is designed such
that an adequate coverage of the shipping traffic in the region
of interest can be achieved. The other parameters shared by
the two settings are fixed as follows: the vertical orientation of
a camera is set as -2◦; the camera height w.r.t. the sea surface
is set as 100 meters; the horizontal field of view of cameras
is set as 60◦; the vertical field of view of cameras is set as
35.98◦; the maximum monitoring range of cameras is set as
20 kilometers; and the video resolution captured by cameras
is set as 1,920 by 1,080 pixels. Most of these parameter values
are the same as in the previous study [23].

In the experiments, one-month AIS data for September
2024 is used as the training dataset to construct the baseline
methods introduced later. One-week of AIS data from October
1st to October 7th, 2024 is used as the test dataset to
simulate the ship location estimates from cameras, generate
trajectory imputation tasks, and compare results from different
imputation methods.

Pre-processing. The following pre-processing steps are
applied to the datasets:
1) Spatial filtering. AIS messages are discarded whose lo-

cation falls outside the area of interest. For the training
dataset, this area of interest is shown as the grey polygons
in Fig. 4. For the test dataset, this area of interest refers to
the union of the monitored regions by all cameras.

2) Type filtering. Only AIS messages of type ‘Class A’ or
‘Class B’ are kept. These are the two main types of AIS
data that contain ship location reports.

3) Duplicate removal. If multiple AIS messages have the
same timestamp and MMSI, then one of them is randomly
chosen and retained, and the other duplicates are removed.

4) Trajectory extraction. Each MMSI number in the AIS data
is treated as a different ship. For each ship, a new trajectory
is created whenever an AIS point has a time difference
larger than 10 minutes or its speed exceeds 50 knots per
hour w.r.t. its predecessor.

5) Short trajectory removal. Trajectories with a duration below
10 seconds are discarded because they are too short to be
useful for analysis.

Table II shows statistics for the two datasets after pre-
processing. An obvious difference between the two multi-
camera settings is that the InsideSkagen setting contains
fewer trajectories than the OutsideSkagen setting; however,
trajectories in the InsideSkagen setting have a much longer
duration than those in the OutsideSkagen setting.

TABLE II. Dataset characteristics after pre-processing

dataset setting # of points # of traj. avg. traj. duration

training InsideSkagen 2,167,404 2,788 5.79 hours
OutsideSkagen 1,101,775 4,839 0.59 hours

test InsideSkagen 406,131 919 4.13 hours
OutsideSkagen 448,484 1,179 0.96 hours

B. Trajectory Imputation Task Generation

In this work, we assume that during an AIS gap, a ship
always stays inside the area that can be monitored by at
least two cameras. Therefore, the imputation tasks in the
experiments are generated randomly from the sub-trajectories
that pass through the grey polygons in Fig. 4. From the pre-
processed trajectories, 581 sub-trajectories are obtained for the
InsideSkagen setting, and 1,062 sub-trajectories are obtained
for the OutsideSkagen setting.

For each setting, we create 6 groups of imputation tasks
that have a gap duration from 1 to 6 hours respectively. Each
group contains 200 tasks which are uniformly sampled from
valid gap candidates in the sub-trajectories. In this way, each
task represents a different AIS gap to be imputed.

For each sub-trajectory T sub, the valid gap candidates in
T sub are determined as follows. First, any trajectory window
in T sub with the desired duration (from 1 to 6 hours) is
considered a gap candidate.3 Second, for a gap candidate to
be valid, two requirements should be satisfied: the distance
between the gap start and the gap end is at least 500 meters,
and the sinuosity of the trajectory window is larger than a
threshold (1.1 is used in this work). These two requirements
make sure that the generated gaps are not as easy as straight
lines for which the simple linear interpolation is enough.
Furthermore, it is worth noting that imputation tasks longer

3The term ‘trajectory window’ also means a sub-trajectory from a larger
trajectory. It is used here to avoid confusion with the ‘sub-trajectories’ that
pass through the grey polygons in Fig. 4.



1h 2h 3h 4h 5h 6h
gap duration

0

25

50

75

100

125

150

175

200

co
un

t o
f g

ap
s

< 3km
3~6 km
> 6km

(a) InsideSkagen

1h 2h 3h 4h 5h 6h
gap duration

0

25

50

75

100

125

150

175

200

co
un

t o
f g

ap
s

< 3km
3~6 km
> 6km

(b) OutsideSkagen
Fig. 5. Distribution of gap imputation tasks based on spatial distance

than 6 hours are excluded because in data exploration we
observe that valid gap candidates longer than 6 hours are rare
in the OutsideSkagen setting.

Fig. 5 shows the distribution of the imputation tasks based
on the spatial distance of an AIS gap. Clearly, most of
the imputation tasks in the InsideSkagen setting have a gap
distance below 3 km, whereas imputation tasks in the Out-
sideSkagen setting have a more balanced distribution between
the three distance ranges. This difference results from the
large anchorage area of the Skagen harbor, which implies that
a ship tends to stop for a longer time in the InsideSkagen
setting than in the OutsideSkagen setting. On the other hand,
this difference also indicates the diversity of the generated
imputation tasks, and this diversity allows the evaluation of
trajectory imputation algorithms in various cases.

C. Baseline Methods and Evaluation Metrics

Baseline Methods. For comparison, we use two state-of-
the-art trajectory imputation methods for AIS data:
• DAISTIN [8]. DAISTIN imputes a gap by computing the

shortest path over a graph built from massive historical AIS
data. For the sake of scalability, DAISTIN uses a technique
called geometric sampling to select representative points for
graph construction. Since AIS points in the InsideSkagen
setting are more concentrated than in the OutsideSkagen
setting, we have sampled 10% of AIS points for graph
construction in the InsideSkagen setting and 30% of AIS
points for graph construction in the OutsideSkagen setting.

• AISClean [14]. AISClean also uses historical AIS data
for trajectory imputation. Specifically, AISClean imputes
a gap by translating and scaling the most representative
historical AIS trajectory that passes near the gap locations.
For our datasets, a threshold radius of 250 meters is used to
determine if an AIS trajectory passes near the gap locations,
and this threshold is half of the minimum spatial distance
used for imputation task generation in Section V-B.
Note that both DAISTIN and AISClean may fail when there

are no historical AIS data near the gap locations or the AIS
data nearby is sparse. When this happens, we use a simple
linear interpolation method as the fallback option for both
DAISTIN and AISClean.

For our proposed algorithm TrajImpMC, the maximum
speed of a ship is set as 50 knots, which is the same as in
the pre-processing steps and also used in previous studies [34],
[35]. The negative buffer size is set as -0.01 meter, and it works

1h 2h 3h 4h 5h 6h
gap duration

0

100

200

300

400

500

600

700

RM
SE

 e
rro

r

AISClean
DAISTIN
TrajImpMC
TrajImpMC2
TrajImpMC5

(a) InsideSkagen, DTW-based

1h 2h 3h 4h 5h 6h
gap duration

0

500

1000

1500

2000

2500

3000

3500

RM
SE

 e
rro

r

AISClean
DAISTIN
TrajImpMC
TrajImpMC2
TrajImpMC5

(b) OutsideSkagen, DTW-based

1h 2h 3h 4h 5h 6h
gap duration

0

500

1000

1500

2000

2500

RM
SE

 e
rro

r

AISClean
DAISTIN
TrajImpMC
TrajImpMC2
TrajImpMC5

(c) InsideSkagen, Fréchet-based

1h 2h 3h 4h 5h 6h
gap duration

0

1000

2000

3000

4000

5000

6000

7000

RM
SE

 e
rro

r

AISClean
DAISTIN
TrajImpMC
TrajImpMC2
TrajImpMC5

(d) OutsideSkagen, Fréchet-based
Fig. 6. RMSE for all methods

properly in the experiments. Furthermore, we compare three
variants of TrajImpMC for which the time step size ∆t is set
as 1 second, 2 seconds, and 5 seconds, respectively. Hereafter,
these variants are denoted as TrajImpMC, TrajImpMC2, and
TrajImpMC5.

Metrics. To evaluate the quality of the imputed trajectories,
we use two popular trajectory similarity measures: Fréchet
distance [36], and normalized DTW distance [37]. Fréchet dis-
tance focus on the largest deviation between two trajectories,
whereas the DTW distance measures the overall trajectory sim-
ilarity by computing the sum of distances between matching
points along a warping path. Since the original DTW distance
depends on the number of points in the input trajectories, in
this work, we compute the normalized DTW distance by using
the length of the optimal warping path.

For each imputation task, these two distance measures are
computed between the real trajectory during the gap and the
imputed trajectories. The Root Mean Squared Error (RMSE)
[8] is then reported for each distance measure and for each
group of imputation tasks.

TABLE III. Overall RMSE errors based on DTW and Fréchet distances

AISClean DAISTIN TrajImpMC TrajImpMC2 TrajImpMC5
DTW 1893.8 1625.2 4.3 4.5 11.6
Fréchet 4040.8 3249.0 32.9 47.5 114.2

D. Comparison of Trajectory Imputation Results

RMSE Analysis. Fig. 6 shows the RMSE errors for the
algorithms compared. Overall, RMSE errors of the three
variants of TrajImpMC are significantly lower than the two
baselines AISClean and DAISTIN. Table III shows the overall
RMSE errors under the two settings. Clearly, the TrajImpMC
framework reduces the RMSE error by at least one order of
magnitude. This substantial improvement shows the advantage
of using data from other sensors for imputing large AIS gaps.

To investigate the effect of the time step ∆t, Fig. 7 shows in
more detail the RMSE errors of the three variants TrajImpMC,



1h 2h 3h 4h 5h 6h
gap duration

0.0
2.5
5.0
7.5

10.0
12.5
15.0
17.5
20.0

RM
SE

 e
rro

r

TrajImpMC
TrajImpMC2
TrajImpMC5

(a) InsideSkagen, DTW-based

1h 2h 3h 4h 5h 6h
gap duration

0

1

2

3

4

5

6

RM
SE

 e
rro

r

TrajImpMC
TrajImpMC2
TrajImpMC5

(b) OutsideSkagen, DTW-based

1h 2h 3h 4h 5h 6h
gap duration

0

50

100

150

200

RM
SE

 e
rro

r

TrajImpMC
TrajImpMC2
TrajImpMC5

(c) InsideSkagen, Fréchet-based

1h 2h 3h 4h 5h 6h
gap duration

0

10

20

30

40

50

60

RM
SE

 e
rro

r

TrajImpMC
TrajImpMC2
TrajImpMC5

(d) OutsideSkagen, Fréchet-based
Fig. 7. RMSE for TrajImpMC, TrajImpMC2 and TrajImpMC5

TrajImpMC2, and TrajImpMC5. On one hand, TrajImpMC
and TrajImpMC2 perform better than TrajImpMC5 in all
cases. On the other hand, TrajImpMC has smaller RMSE
errors than TrajImpMC2 in Fig. 7b and Fig. 7c; however, they
are tied in Fig. 7a and Fig. 7d.

Furthermore, an interesting point to note is that a longer gap
duration does not necessarily lead to a larger RMSE error. For
example, when the gap duration varies from 1 to 6 hours, the
RMSE shows a downward trend in Fig. 7b and fluctuates in
Fig. 7d. This reveals that the complexity of filling AIS gaps
is probably more affected by the real traffic situation during
the gap period. For example, if the ship s underlying an AIS
gap has more other ships in its vicinity, it will then be more
challenging for the tracking-based TrajImpMC framework to
correctly identify the ship locations for s.

Visualization Analysis. To get a better understanding of
the imputed trajectories by different algorithms, Fig. 8 shows
representative examples. After a closer examination, the fol-
lowing insights can be made:

• The baselines AISClean and DAISTIN cannot deal with
complex ship movements. All the real trajectories in Fig. 8
exhibit complex movement patterns, and the imputed trajec-
tories by AISClean and DAISTIN deviate largely from the
actual ship movements. Such results highlight the difficulty
of imputing large AIS gaps in an open-sea scenario. Since
not constrained by a road network, there are numerous ways
for a ship to move between locations. Therefore, it is hard
and even impossible to find a historical trajectory (as done
in AISClean) that qualifies as the most representative route
between the gap locations. Similarly, computing the shortest
path (as done in DAISTIN) is also unlikely to recover the
missing ship trajectory during a large AIS gap.

• Most of the time, TrajImpMC, TrajImpMC2, and Tra-
jImpMC5 return similar results, and their imputed trajec-
tories align well with the real ship trajectory.

• Occasionally, TrajImpMC2 and TrajImpMC5 give rise to

noticeable deviations in the imputed trajectories. For ex-
ample, both TrajImpMC2 and TrajImpMC5 lose track of
the second half of the real ship trajectory in Fig. 8c, and
TrajImpMC5 loses track of the real ship trajectory from the
beginning in Fig. 8d. These cases mainly occur when the
tracking module in the TrajImpMC framework is misled by
the locations of other ships. However, it is worth noting that
such cases are rare in the overall experimental results, and
they are added in Fig. 8 for the sake of completeness.
Runtime Analysis. Fig. 9 shows the average runtime for

imputing AIS gaps by each algorithm. The baselines AISClean
and DAISTIN are much faster than the three variants of Tra-
jImpMC. This is because AISClean and DAISTIN only focus
on the spatial aspect and do not depend on the gap duration
at all. On the contrary, the TrajImpMC framework is based
on tracking, and its execution time increases linearly w.r.t.
the gap duration. Given the superior quality of the imputed
trajectories by the three TrajImpMC variants, we argue that
it is worthwhile for the TrajImpMC framework to exchange
execution time for the quality of imputed trajectories.

In addition, Fig. 9 shows that using larger values for the
time step ∆t can effectively reduce the execution time, because
larger ∆t values lead to fewer tracking steps in the TrajImpMC
framework. Combined with previous quality analysis, a time
step of 2 seconds seems a recommended value to balance
between execution time and the quality of imputed trajectories.

VI. CONCLUSION

To overcome the limitations of existing trajectory imputa-
tion methods for AIS data, we propose TrajImpMC, a tracking-
based framework for imputing large AIS gaps. Built on top of
time-aware and polygon-based ship location estimates from
multiple coastal cameras, TrajImpMC works in four steps.
First, TrajImpMC uses speed constraints to construct the track-
ing space, which contains all the possibilities for the missing
ship trajectory. Second, TrajImpMC employs a Kalman filter
to find the most likely sequence of polygons that a ship has
passed during its AIS gap. Third, the shortest path is computed
that visits in turn this sequence of polygons. Finally, time in-
formation is restored such that the imputed trajectory contains
both spatial and temporal information. Extensive experiments
are conducted on real datasets to compare TrajImpMC with
two state-of-the-art trajectory imputation methods for AIS
data. Results show that TrajImpMC reduces the RMSE error
by at least one order of magnitude. In addition, visual analysis
shows that the imputed trajectories by TrajImpMC are the
closest to the real ship trajectories during AIS gaps.

For future work, we will design techniques to further opti-
mize the execution time of TrajImpMC. Also, it is interesting
to investigate how TrajImpMC can be extended to deal with
the situation where a ship is only monitored by one camera
during its AIS gap.

ACKNOWLEDGMENT

This publication has been developed under the framework
of the “Data Engineering for Data Science” (DEDS) project



gap end

gap start
500 m

real trajectory
AISClean
DAISTIN
TrajImpMC
TrajImpMC2
TrajImpMC5

(a) InsideSkagen: gap duration = 1 hours

gap end

gap start

500 m

real trajectory
AISClean
DAISTIN
TrajImpMC
TrajImpMC2
TrajImpMC5

(b) InsideSkagen: gap duration = 2 hours

gap end

gap start

100 m

real trajectory
AISClean
DAISTIN
TrajImpMC
TrajImpMC2
TrajImpMC5

(c) InsideSkagen: gap duration = 3 hours

gap end

gap start

1 km

real trajectory
AISClean
DAISTIN
TrajImpMC
TrajImpMC2
TrajImpMC5

(d) InsideSkagen: gap duration = 4 hours

gap end

gap start

500 m

real trajectory
AISClean
DAISTIN
TrajImpMC
TrajImpMC2
TrajImpMC5

(e) InsideSkagen: gap duration = 5 hours

gap end

gap start

1 km

real trajectory
AISClean
DAISTIN
TrajImpMC
TrajImpMC2
TrajImpMC5

(f) InsideSkagen: gap duration = 6 hours

gap end

gap start

real trajectory
AISClean
DAISTIN
TrajImpMC
TrajImpMC2
TrajImpMC5

200 m

(g) OutsideSkagen: gap duration = 1 hours

gap end

gap start

real trajectory
AISClean
DAISTIN
TrajImpMC
TrajImpMC2
TrajImpMC5

200 m

(h) OutsideSkagen: gap duration = 2 hours

gap end
gap start

real trajectory
AISClean
DAISTIN
TrajImpMC
TrajImpMC2
TrajImpMC5

1 km

(i) OutsideSkagen: gap duration = 3 hours

gap end

gap start

real trajectory
AISClean
DAISTIN
TrajImpMC
TrajImpMC2
TrajImpMC5

1 km

(j) OutsideSkagen: gap duration = 4 hours

gap end

gap start

real trajectory
AISClean
DAISTIN
TrajImpMC
TrajImpMC2
TrajImpMC5

1 km

(k) OutsideSkagen: gap duration = 5 hours

gap end

gap start

real trajectory
AISClean
DAISTIN
TrajImpMC
TrajImpMC2
TrajImpMC5

1 km

(l) OutsideSkagen: gap duration = 6 hours
Fig. 8. Examples of trajectory imputation results. One example is chosen for each combination of multi-camera setting and gap duration. The imputed
trajectories by TrajImpMC, TrajImpMC2, and TrajImpMC5 may highly overlap with the real trajectory when they are very close to each other.

1h 2h 3h 4h 5h 6h
gap duration

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

av
g.

 ru
nt

im
e 

in
 se

co
nd

s

AISClean
DAISTIN
TrajImpMC
TrajImpMC2
TrajImpMC5

(a) InsideSkagen

1h 2h 3h 4h 5h 6h
gap duration

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

av
g.

 ru
nt

im
e 

in
 se

co
nd

s

AISClean
DAISTIN
TrajImpMC
TrajImpMC2
TrajImpMC5

(b) OutsideSkagen
Fig. 9. Runtime analysis

that has received funding from the European Union’s Hori-
zon 2020 programme (call identified: H2020-MSCA-ITN-

EJD-2020) under grant agreement No 955895. Computational
resources have been provided by the supercomputing facil-
ities of the Université catholique de Louvain (CISM/UCL)
and the Consortium des Équipements de Calcul Intensif en
Fédération Wallonie Bruxelles (CÉCI) funded by the Fond de
la Recherche Scientifique de Belgique (F.R.S.-FNRS) under
convention 2.5020.11 and by the Walloon Region.



REFERENCES

[1] K. Bereta, K. Chatzikokolakis, and D. Zissis, “Maritime reporting
systems,” Guide to Maritime Informatics, pp. 3–30, 2021.

[2] L. Eljabu, M. Etemad, and S. Matwin, “Spatial clustering method of
historical ais data for maritime traffic routes extraction,” in 2022 IEEE
International Conference on Big Data (Big Data), 2022, pp. 893–902.

[3] N. Bläser, B. B. Magnussen, G. Fuentes, H. Lu, and L. Reinhardt,
“Matnec: Ais data-driven environment-adaptive maritime traffic network
construction for realistic route generation,” Transportation Research Part
C: Emerging Technologies, vol. 169, p. 104853, 2024.

[4] T. Hensel, C. Ugé, and C. Jahn, “Green shipping: using ais data
to assess global emissions,” in Sustainability Management Forum—
NachhaltigkeitsManagementForum, vol. 28, no. 1. Springer, 2020, pp.
39–47.

[5] S. Wu, K. Torp, M. Sakr, and E. Zimanyi, “Evaluation of vessel CO2

emissions methods using ais trajectories,” in Proceedings of the 18th
International Symposium on Spatial and Temporal Data (SSTD). ACM,
2023, pp. 65–74.

[6] S. Arasteh, M. A. Tayebi, Z. Zohrevand, U. Glässer, A. Y. Shahir,
P. Saeedi, and H. Wehn, “Fishing vessels activity detection from lon-
gitudinal ais data,” in Proceedings of the 28th International conference
on advances in geographic information systems, 2020, pp. 347–356.

[7] S. Wu, E. Zimányi, M. Sakr, and K. Torp, “Semantic segmentation of
ais trajectories for detecting complete fishing activities,” in 2022 23rd
IEEE International Conference on Mobile Data Management (MDM).
IEEE, 2022, pp. 419–424.

[8] B. B. Magnussen, N. Bläser, and H. Lu, “Daistin: A data-driven ais
trajectory interpolation method,” in Proceedings of the 18th International
Symposium on Spatial and Temporal Data, 2023, pp. 75–84.

[9] Z. Zhang, Z. Fan, Z. Lv, X. Song, and R. Shibasaki, “Long-term vessel
trajectory imputation with physics-guided diffusion probabilistic model,”
in Proceedings of the 30th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining, 2024, pp. 4398–4407.

[10] I. Kontopoulos, I. Varlamis, and K. Tserpes, “A distributed framework
for extracting maritime traffic patterns,” International Journal of Geo-
graphical Information Science, vol. 35, no. 4, pp. 767–792, 2021.

[11] S. Guo, J. Mou, L. Chen, and P. Chen, “Improved kinematic interpolation
for ais trajectory reconstruction,” Ocean Engineering, vol. 234, p.
109256, 2021.

[12] B. Zaman, D. Marijan, and T. Kholodna, “Interpolation-based inference
of vessel trajectory waypoints from sparse ais data in maritime,” Journal
of Marine Science and Engineering, vol. 11, no. 3, p. 615, 2023.

[13] A. Troupiotis-Kapeliaris, D. Zissis, K. Bereta, M. Vodas, G. Spiliopou-
los, and G. Karantaidis, “The big picture: An improved method for
mapping shipping activities,” Remote Sensing, vol. 15, no. 21, p. 5080,
2023.

[14] M. Liang, J. Su, R. W. Liu, and J. S. L. Lam, “Aisclean: Ais data-driven
vessel trajectory reconstruction under uncertain conditions,” Ocean
Engineering, vol. 306, p. 117987, 2024.

[15] S. Li, M. Liang, X. Wu, Z. Liu, and R. W. Liu, “Ais-based vessel
trajectory reconstruction with u-net convolutional networks,” in 2020
IEEE 5th International Conference on Cloud Computing and Big Data
Analytics (ICCCBDA). IEEE, 2020, pp. 157–161.

[16] M. J. Loomans, P. H. de With, and R. G. Wijnhoven, “Robust automatic
ship tracking in harbours using active cameras,” in 2013 IEEE Interna-
tional Conference on Image Processing. IEEE, 2013, pp. 4117–4121.

[17] D. Geudtner, R. Torres, P. Snoeij, M. Davidson, and B. Rommen,
“Sentinel-1 system capabilities and applications,” in 2014 IEEE geo-
science and remote sensing symposium. IEEE, 2014, pp. 1457–1460.

[18] F. Gascon, E. Cadau, O. Colin, B. Hoersch, C. Isola, B. L. Fernández,
and P. Martimort, “Copernicus sentinel-2 mission: products, algorithms
and cal/val,” in Earth observing systems XIX, vol. 9218. SPIE, 2014,
pp. 455–463.

[19] E. Gülsoylu, P. Koch, M. Yıldız, M. Constapel, and A. P. Kelm, “Image
and ais data fusion technique for maritime computer vision applications,”
arXiv preprint arXiv:2312.05270, 2023.

[20] Y. Guo, R. W. Liu, J. Qu, Y. Lu, F. Zhu, and Y. Lv, “Asynchronous
trajectory matching-based multimodal maritime data fusion for vessel
traffic surveillance in inland waterways,” IEEE Transactions on Intelli-
gent Transportation Systems, 2023.

[21] S. Mao, E. Tu, G. Zhang, L. Rachmawati, E. Rajabally, and G.-B.
Huang, “An automatic identification system (ais) database for maritime

trajectory prediction and data mining,” in Proceedings of ELM-2016.
Springer, 2018, pp. 241–257.

[22] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks
for biomedical image segmentation,” in Medical image computing and
computer-assisted intervention–MICCAI 2015: 18th international con-
ference, Munich, Germany, October 5-9, 2015, proceedings, part III 18.
Springer, 2015, pp. 234–241.

[23] S. Wu, A. Troupiotis-Kapeliaris, D. Zissis, K. Torp, E. Zimányi, and
M. Sakr, “Uncertainty-aware ship location estimation using multiple
cameras in coastal areas,” in 2024 25th IEEE International Conference
on Mobile Data Management (MDM). IEEE, 2024, pp. 109–118.

[24] J. Barr, O. Harrald, S. Hiscocks, N. Perree, H. Pritchett, S. Vidal,
J. Wright, P. Carniglia, E. Hunter, D. Kirkland et al., “Stone soup
open source framework for tracking and state estimation: enhancements
and applications,” in Signal Processing, Sensor/Information Fusion, and
Target Recognition XXXI, vol. 12122. SPIE, 2022, pp. 43–59.

[25] G. Welch and G. Bishop, “An introduction to the kalman filter,” USA,
Tech. Rep., 1995.

[26] J. Wang, N. Wu, X. Lu, W. X. Zhao, and K. Feng, “Deep trajectory
recovery with fine-grained calibration using kalman filter,” IEEE Trans-
actions on Knowledge and Data Engineering, vol. 33, no. 3, pp. 921–
934, 2019.

[27] N. Wojke, A. Bewley, and D. Paulus, “Simple online and realtime
tracking with a deep association metric,” in 2017 IEEE international
conference on image processing (ICIP). IEEE, 2017, pp. 3645–3649.

[28] E. Kaufmann, L. Bauersfeld, A. Loquercio, M. Müller, V. Koltun, and
D. Scaramuzza, “Champion-level drone racing using deep reinforcement
learning,” Nature, vol. 620, no. 7976, pp. 982–987, 2023.

[29] W.-C. Lee and J. Krumm, “Trajectory preprocessing,” in Computing with
spatial trajectories. Springer, 2011, pp. 3–33.

[30] M. Dror, A. Efrat, A. Lubiw, and J. S. Mitchell, “Touring a sequence
of polygons,” in Proceedings of the thirty-fifth annual ACM symposium
on Theory of computing, 2003, pp. 473–482.

[31] X. Tan and B. Jiang, “Efficient algorithms for touring a sequence of
convex polygons and related problems,” in International Conference on
Theory and Applications of Models of Computation. Springer, 2017,
pp. 614–627.

[32] A. S. Klitgaard, L. E. Josefsen, M. V. Mikkelsen, and K. Torp, “A
distributed spatial data warehouse for ais data,” in 2024 25th IEEE
International Conference on Mobile Data Management (MDM). IEEE,
2024, pp. 211–218.

[33] D. Nguyen and R. Fablet, “Traisformer-a generative transformer for ais
trajectory prediction,” arXiv e-prints, pp. arXiv–2109, 2021.

[34] K. Patroumpas, E. Chondrodima, N. Pelekis, and Y. Theodoridis, “Tra-
jectory detection and summarization over surveillance data streams,” Big
Data Analytics for Time-Critical Mobility Forecasting: From Raw Data
to Trajectory-Oriented Mobility Analytics in the Aviation and Maritime
Domains, pp. 85–120, 2020.

[35] A. Tritsarolis, Y. Kontoulis, N. Pelekis, and Y. Theodoridis, “Masec:
discovering anchorages and co-movement patterns on streaming vessel
trajectories,” in Proceedings of the 17th International Symposium on
Spatial and Temporal Databases, 2021, pp. 170–173.

[36] H. Alt and M. Godau, “Computing the fréchet distance between two
polygonal curves,” International Journal of Computational Geometry &
Applications, vol. 5, no. 01n02, pp. 75–91, 1995.

[37] B.-K. Yi, H. V. Jagadish, and C. Faloutsos, “Efficient retrieval of similar
time sequences under time warping,” in Proceedings 14th International
Conference on Data Engineering. IEEE, 1998, pp. 201–208.


	Introduction
	Related Work
	Problem Definition
	Methodology
	Refinement of Tracking Space
	Kalman filter-based Polygon Sequence Selection
	Shortest-Path Computation over the Polygon Sequence
	Timestamp Assignment

	Experiments
	Datasets and Pre-processing
	Trajectory Imputation Task Generation
	Baseline Methods and Evaluation Metrics
	Comparison of Trajectory Imputation Results

	Conclusion
	References

