
Uncertainty-Aware Ship Location Estimation using
Multiple Cameras in Coastal Areas

Song Wu∗†, Alexandros Troupiotis-Kapeliaris‡, Dimitris Zissis‡, Kristian Torp†, Esteban Zimányi∗, Mahmoud Sakr∗
∗Université Libre de Bruxelles, Brussels, Belgium

†Aalborg University, Aalborg, Denmark
‡University of the Aegean, Syros, Greece

∗{song.wu, esteban.zimanyi, mahmoud.sakr}@ulb.be, †{songw, torp}@cs.aau.dk, ‡{alextroupi, dzissis}@aegean.gr

Abstract—Recent advances, especially in deep learning, allow
to effectively detect ship targets in surveillance videos. However,
the translation of these detections to the real-world locations of
ships has not been sufficiently explored. The common approach
in the literature is using a transformation matrix to convert a
pixel to a real-world coordinate. However, this approach has
three shortcomings: first, a set of reference point pairs has
to be manually prepared to establish the matrix; second, the
matrix always maps a pixel to the same real-world coordinate,
ignoring that there is no one-to-one correspondence between
discrete pixel coordinates and continuous real-world coordinates;
third, this approach can only work with one camera. In light
of this, we propose a technique PixelToRegion that explicitly
takes into account the uncertainty in coordinate conversion by
mapping each pixel to a spatial polygon. Next, we propose a new
algorithm MCbSLE that can estimate ship locations using pixel
sets from multiple cameras. The precision of location estimation
by MCbSLE is enhanced through spatial intersection between
polygons from different cameras. Experiments are conducted
under 16 carefully designed multi-camera settings to evaluate
MCbSLE w.r.t. four factors: different ports, the number of
cameras, the distance between cameras, and camera headings.
Results on one-day ship trajectory data show that (1) an 79.8%
accuracy in the number of coordinates can be achieved by
MCbSLE when there are no more than 10 ships in camera views;
(2) using multiple cameras can improve the precision of location
estimation by one order of magnitude compared with using one
camera.

Index Terms—Trajectory, Location, Camera, AIS, Ship

I. INTRODUCTION

In the maritime domain, ship tracking is a fundamental task

and leads to the collection of massive ship trajectory data

over time. Such data enables many important applications

[1], such as extracting traffic routes [2], detecting fishing

activities [3], predicting future locations [4], and estimating

CO2 emissions [5]. In practice, ship tracking is achieved using

various sensors, and two commonly-used are the Automatic

Identification System (AIS) and surveillance cameras.

The AIS technology was initially introduced for the purpose

of collision avoidance. Basically, ships with AIS onboard can

proactively broadcast their navigational information to nearby

ships, coastal AIS stations, and even satellites. AIS data can

be divided into three types [6]: (1) static data such as the

MMSI (a ship’s identity), ship type, and ship size; (2) dynamic

data such as the current ship location, speed, and heading;

and (3) voyage-related data such as destination and estimated

time of arrival. Usually, a ship sends AIS data every 2 to 10

seconds when it is moving and every 3 minutes when it is

anchored [7]. In the past decades, AIS has been extensively

deployed worldwide, making it the most used data source for

tracking ships today [8]–[10]. However, some issues still exist

for AIS and the main problem is intentional AIS switch-off.

The collaborative nature of AIS means that the crew onboard

can switch off AIS if they want to hide their whereabouts

from others. Ships switching off AIS thereby become “dark”

and cannot be tracked using AIS [8].

Cameras are also widely used in maritime surveillance for

monitoring inbound, outbound, and passing traffic [11] [12],

[13]. They can be installed onboard ships, in harbors, and

along waterways. The benefit of cameras is that they can

provide visual appearance of ships and monitor ships in a

real-time manner. However, camera-based ship tracking also

has limitations, among which the main problem is that ship

identity and other useful information in AIS are hard to

determine using images alone [12].

Given the pros and cons of a single sensor, multi-sensor

data fusion has become popular over time. In the past years,

many studies have emerged to fuse AIS and video data

[12], [14], [15]. The main purpose of these studies is to

recognize identities of the ship targets in videos and enrich

these targets with various information from AIS [12], [16].

Since these studies deal with only one camera, data fusion can

be performed either in the lon/lat or in the pixel coordinate

space. Most of the previous studies do the latter and choose

to convert lon/lat to pixel coordinates [12], [15], [17].

Contrary to the purpose of enhancing video data with AIS

data in previous studies, this work considers the data fusion

problem from the other perspective: improving AIS data qual-

ity with video data. Concretely, large temporal gaps are found

in AIS data from time to time [18], ranging from minutes to

hours or even days. For these large gaps, the common linear

interpolation technique does not help much. For example, the

interpolated trajectory may cross land (e.g. islands). Moreover,

this technique implies that a ship is constantly moving all the

time during the gap, which is not always the case. On the

other hand, surveillance videos have been used for decades in

coastal areas to monitor ship traffic in a real-time manner, and

109

2024 25th IEEE International Conference on Mobile Data Management (MDM)

2375-0324/24/$31.00 ©2024 IEEE
DOI 10.1109/MDM61037.2024.00034

large amounts of video data are collected over time. However,

one pillar that is lacking in the literature is how to effectively

extract the ship locations from these video data, which is thus

the research focus in this work.

In summary, the research gap we are trying to fill in this

work is estimating ship locations using multiple cameras,

which has not been well studied yet. A multi-camera setting

is chosen because we will explicitly take into account the un-

certainty in coordinate conversion between pixels and lon/lat.

Using multiple cameras can thus reduce such uncertainty and

increase the precision of location estimation. Also, a multi-

camera setting is common in reality especially when the area

of interest is large and needs to be monitored in various

directions [19], [20]. The estimated ship locations can be used

to identify small or “dark” ships without AIS signals and warn

others about their presence, thus enhancing navigational safety.

Note that ship detection itself is an orthogonal and well-studied

problem [16], [17] and beyond the scope of this work. It is

thus assumed that ships in images have already been ideally

detected. The main contributions in this work are as follows:

• We highlight the uncertainty in converting discrete pixel

coordinates to continuous lon/lat coordinates. A technique

PixelToRegion is then proposed that models such uncer-

tainty by mapping a pixel coordinate to a spatial polygon.

• We propose an algorithm MCbSLE that estimates ship

locations using pixel sets from multiple cameras. This

algorithm improves the precision of location estimation

through spatial intersection between pixel polygons from

different cameras.

• To evaluate how the estimation results by MCbSLE
are affected by different ports, the number of cameras,

the distance between cameras, and camera headings,

extensive experiments are conducted using one-day AIS

data under 16 carefully designed multi-camera settings.

• Results show that the accuracy of MCbSLE in the

number of coordinates is mostly affected by the number

of coordinates in the ground truth, and an accuracy of

79.8% can be achieved when there are no more than

10 ships in camera views. In addition, using multiple

cameras can improve the precision of location estimation

by one order of magnitude compared with using only one

camera.

The rest of the paper is organized as follows: Section II

gives a brief review of related work. Section III defines some

notations and provides the problem definition. Section IV

presents our proposed methodology. Section V shows the main

experimental results for evaluation of the proposed solutions.

Finally, Section VI concludes the paper and discusses direc-

tions for future research.

II. RELATED WORK

Video-based ship detection and tracking. As a traditional

and widely-used surveillance means, cameras allow maritime

administrations to monitor ship traffic in a real-time man-

ner. To aid human decision-making, two tasks are usually

performed on surveillance videos: ship detection and ship

tracking. Ship detection is the task of detecting ship targets

appearing in images. Detection results are usually returned

as a list of bounding boxes, where each bounding box is

considered as a ship target. Based on ship detection results,

ship tracking aims to build association between bounding

boxes from adjacent images such that bounding boxes from the

same ship are assigned the same ID. For ship detection, the

best performance is currently obtained using deep-learning-

based object detection models, such as the YOLO (You Only

Look Once) family and their variants [21]–[24]. For ship

tracking, representative studies include DeepSORT-based ones

[12], [16], [25] and overlapping-ratio-based ones [11], [20].

Therefore, this work acknowledges the previous studies and

does not aim at proposing new approaches for ship detection

and tracking. Instead, we focus on another problem that has

received less attention and not been explored much: estimating

real-world locations of the detected ship targets.

Ship location estimation using video data. In the liter-

ature, only a few relevant studies exist [16], [26]–[28]. The

study in [26] mainly uses the ship length to estimate the

distance and relative azimuth between a ship and a camera.

In [26], the width of a bounding box is assumed to be

the projected length of a ship. Therefore, the accuracy of

distance estimation by [26] decreases when the relative angle

between the ship course and the camera bearing is small or

the predicted bounding box is inaccurate. Experiments in [26]

are conducted near the English Channel, and results show

that the mean absolute error of distance estimation is 0.6975

km for ships within 5 km from the camera, 0.9767 km for

ships between 5 km and 10 km from the camera, and 0.8514

km for ships between 10 km and 15 km from the camera.

Such large deviations thus limit its applications in real-world

scenarios. The studies in [16], [27] employs a transformation

matrix to convert a pixel coordinate to a lon/lat coordinate.

The main drawback of this matrix approach is that a set of

point pairs has to be manually prepared to establish the matrix.

Moreover, this approach ignores the fact that there is no one-

to-one correspondence between discrete pixel coordinates and

continuous lon/lat coordinates. Therefore, this matrix approach

only works well when the monitored region is small enough

such as a circle with a radius of hundreds of meters centered

at the camera location. The study in [28] also employs the

matrix approach, but the difference is that it estimates the

ship location using multiple cameras rather than one camera

as in [16], [27]. Basically, the method in [28] locates a ship

by using the least-squares technique to solve a linear system

formed by multiple matrices. However, the method in [28]

is not ready to be used in reality: the homologous points in

different cameras are manually selected in the experiments in

[28]; it is therefore not viable to run the method automatically

in real-world applications.

III. PRELIMINARIES

A. Notation

A camera monitoring the area of interest is denoted by cam,

and it has the following attributes:

110

0 200 400 600 800 1000 1200 1400 1600 1800
X

100

200

300

400

500

600

700

800

900

1000

Y (270,494) (682,492)
(1814,494)

0 200 400 600 800 1000 1200 1400 1600 1800

X

100

200

300

400

500

600

700

800

900

1000

Y

(56,498)
(590,494) (947,492)

0 200 400 600 800 1000 1200 1400 1600 1800
X

100

200

300

400

500

600

700

800

900

1000

Y (469,498) (910,494) (1212,492)

ships are
monitored by

cameras

(3) estimate ship
locations using
MCbSLE

(2) collect all
polygons

superimposition of
ground-truth ship
locations and estimated
ship locations

superimposition of ground-truth ship locations and estimated ship locations

(1) find the
spatial polygon
for each pixel

using
PixelToRegion

Fig. 1. An overview of the proposed solutions. Three “virtual” cameras are placed near Copenhagen, and the monitored areas are shown in red, green, and
blue respectively. Black dots are locations of the 4 ships in the camera views. By processing video data in each camera, the pixel locations of these ships are
shown next. Then the proposed solutions come into play: (1) The proposed algorithm PixelToRegion retrieves the spatial polygon for each pixel location;
(2) All spatial polygons are collected as input; (3) The proposed algorithm MCbSLE estimates the ship locations using the polygons. Finally, the real ship
locations and the estimated ship locations are shown together.

……

pixel (0,0)

pixel (1919,1079)

0
1
2
3
4

1080
1079
1078
1077
1076

…

0 1 2 3 4 … 19201916 …

(a) Each pixel is treated as a square

North

(b) Horizontal orientation (c) Vertical orientation
Fig. 2. Illustration of camera notations

1) cam.lon and cam.lat are the longitude and latitude of

the location of the camera respectively.

2) cam.height is the height of the camera w.r.t. the water

surface.

3) cam.θH is the horizontal orientation of the camera. It

is expressed as the clockwise angle w.r.t. the due north

direction (0◦).

4) cam.θV is the vertical orientation of the camera. It is

negative for cameras pointing downwards and positive

for cameras pointing upwards.

5) cam.fovH and cam.fovV are the horizontal and vertical

field of view (in degrees) of the camera respectively.

6) cam.imgW and cam.imgH are the width and height (in

pixels) of videos taken by the camera.

Fig. 2b and Fig. 2c illustrate some of the above notations.

B. Problem definition

The problem studied in work is referred to as Ship Location
Estimation using Multiple Cameras: Given a multi-camera

setting {cami}, where 1 ≤ i ≤ n, and the monitored region

by {cami} is denoted as R. The ships located inside R are

denoted as S, and their locations (in lon/lat) are denoted as

C. Suppose the pixels corresponding to C in the n cameras

are {Pi}, where each Pi is a set of pixels in cami and a pixel

is indexed by a pair of integers. The goal is then to estimate

and return a set of lon/lat coordinates C ′ using {Pi} such that

C ′ is as close to C as possible.

Note that in this work we assume there exists an approach

A that can process video data and select the correct pixel for

each detected ship target. The selected pixels in each camera

are thus fed as input in this work. The approach A itself is

111

beyond the scope of this work and not our research focus.

IV. METHODOLOGY

The proposed methodology in this work is inspired by

the observation that there is no one-to-one correspondence

between discrete pixel coordinates and continuous lon/lat

coordinates, which is ignored in previous studies. For example,

given a pixel location p, methods based on transformation

matrix always map p to the same lon/lat coordinate. Overall,

our methodology is composed of two parts. The first part

explicitly models the uncertainty in coordinate conversion

between pixels and lon/lat by mapping each pixel to its

corresponding spatial region. The second part benefits from

a multi-camera setting and can significantly improve the pre-

cision of location estimation through the operation of spatial

intersection.

A. Mapping pixels to spatial regions

Conceptually, a camera is a function that maps a spatial

region in real world to the pixel space in images. Given that

there is a finite number of pixels and the spatial region is

continuous, there is no one-to-one correspondence between a

pixel and a lon/lat coordinate. This observation implies that

a pixel p actually corresponds to a certain region R, and all

lon/lat coordinates in R are mapped to the same pixel p.

In this work, we propose a new algorithm PixelToRegion
that maps a pixel to a spatial region. PixelToRegion extends

the pinhole imaging model [25] by treating each pixel as a

square, and Algorithm 1 shows the pseudo-code. The input

d is the maximum monitoring distance of a camera along

the horizontal shooting direction. It is mainly affected by

the elevation and the field of view of cameras. Thus, objects

farther away than d are assumed to become too small to be

detected and vanish from the field of view. In real scenarios,

the value of d can be taken based on various factors, such as

the width of the river facing cameras, the size of a harbor, etc.

Algorithm 1 has mainly two steps. The first step (line#1 to

line#19) transforms each boundary point (blue dots in Fig.

2a) of pixels to a lon/lat coordinate based on the pinhole

principle. Such transformation is not performed if the distance

exceeds d. The blue dots in Fig. 2a are indexed as (x, y), with

x ranging from 0 to cam.imgW and y ranging from 0 to

cam.imgH . The minY variable records the minimum y of

blue dots that satisfy the d threshold. For boundaries points

(with y being minY − 1) that just exceed the d threshold,

d is used in their transformation (line#18 to line#19). Also

note that pixels have different index ranges, with x from 0

to cam.imgW − 1 and y from 0 to cam.imgH − 1. The

function forward in line#16 computes the coordinate that

has a distance A to the camera location and a relative angle

θhor to the camera heading. Then the second step (line#20

to line#28) uses the lon/lat coordinates of the four boundary

points of a pixel p to create a polygon, and this polygon is

assigned to p. Finally, a dictionary D that maps a pixel to its

assigned polygon is returned as output.

Given that each pixel corresponds to a spatial region,

uncertainty exists when trying to transform a pixel to a

lon/lat coordinate. Therefore, the novelty in this work is using

multiple cameras for reducing such uncertainty.

For a lon/lat coordinate loc, it is easy to compute the pixel

p whose associated spatial region contains loc. But given p,

it is difficult to compute backwards and obtain loc due to

uncertainty. The idea in this work is inspired by a multi-camera

setting. Considering a set of cameras cam1, cam2, ..., camn,

let us assume that loc is inside the field of view of each cami.
For each cami, the pixel pi can be computed whose spatial

region contains loc. Therefore, the uncertainty can probably

be substantially reduced if we take the intersection of spatial

regions for p1, p2, ..., and pn. Based on this idea, next we

present the algorithm that recovers real-world coordinates from

multi-camera pixel sets.

Algorithm 1: PixelToRegion

Input: cam: a camera configuration

d: maximum monitoring distance

Output: a dictionary D that maps each pixel to a

spatial region

1 D ← dict();

2 Daux ← dict();

3 θvanish ← arctan(d
cam.height) ;

4 minY ← −1;

5 for x ← 0 to cam.imgW by 1 do
6 for y ← 0 to cam.imgH by 1 do
7 θhor ← arctan(

x− cam.imgW
2

cam.imgW
2

∗ tan(cam.fovH2));

8 θver ← arctan(
y− cam.imgH

2
cam.imgH

2

∗ tan(cam.fovV2));

9 if 90 + cam.θV − θver ≥ θvanish then
10 continue;
11 if minY == −1 then
12 minY ← y;

13 θ′ver ← 90 + cam.θV − θver;
14 C ← cam.height ∗ tan(θ′ver);
15 A ← C

cos(θhor)
;

16 lon, lat ← forward(cam, cam.θH + θhor, A);
17 Daux[x, y] ← lon, lat;
18 for x ← 0 to cam.imgW by 1 do
19 Daux[x,minY − 1] ← d;

20 for x ← 0 to cam.imgW − 1 by 1 do
21 for y ← 0 to cam.imgH − 1 by 1 do
22 if x, y ∈ Daux then
23 p1 ← Daux[x, y];
24 p2 ← Daux[x+ 1, y];
25 p3 ← Daux[x+ 1, y + 1];
26 p4 ← Daux[x, y + 1];
27 D[x, y] ← polygon(p1, p2, p3, p4);
28 return D;

112

Algorithm 2: MCbSLE

Input: {cami}: a list of cameras, where 1 ≤ i ≤ n
{Pi}: a list of Pi, where 1 ≤ i ≤ n, and Pi is a

set of pixels in cami
d: maximum monitoring distance

Output: C: a set of lon/lat coordinates

1 C ← {} // initialize an empty result;

2 foreach cami do
3 cami.D ← PixelToRegion(cami, d);
4 cami.R ← ⋃

cami.D.values()
5 S ← {} //a set of valid pixel-combination candidates;

6 for k ← n to 1 by −1 do
7 P k ← all k-combinations of {Pi};

8 prod ← {};

9 foreach comb ∈ P k do
10 prod′ ← the cartesian product of sets in comb;

11 append all elements in prod′ to prod;

12 Sk ← dict();

13 foreach e ∈ prod do
14 regions ← {};

15 foreach pixel ∈ e do
16 r ← the associated polygon of pixel;
17 add r to regions;

18 r′ ← the spatial intersection of regions;

19 if r′ is not empty then
20 Sk[e] ← r′ ;

21 foreach e ∈ Sk do
22 if �e′ ∈ S : e ⊂ e′ then
23 r ← Sk[e];

24 rest ← cameras not appearing in e;

25 foreach camj ∈ rest do
26 r ← diff (r, camj .R);
27 if r is not empty then
28 append e to S;

29 if r is a MultiPolygon then
30 foreach poly ∈ r do
31 add the centroid of poly to C;

32 else
33 add the centroid of r to C;

34 return C;

B. Multi-camera-based ship location estimation

Algorithm 2 shows the pseudo-code of MCbSLE (Multi-

Camera-based Ship Location Estimation) that estimates lon/lat

coordinates of ships using multiple cameras. The algorithm

takes as input a set of pixel sets {Pi}, where each Pi belongs

to a camera cami.
First, all cameras in {cami} are initialized, and the visible

region of each cami is computed by taking the union of

all spatial regions in cami.D (line#1 to line#4). Then all

pixel combinations are examined in the decreasing order of

cardinality (line#6). Thus, spatial intersection involving more

pixels is checked before that involving less pixels, and the

purpose is to avoid repeated processing. For example, if we

already know that a ship is located in the intersection of spatial

regions for pixels p1, p2, p3, we then do not need to check

again the intersection by any two pixels in p1, p2, p3. If the

spatial intersection r′ is not empty, it will be added to Sk

(line#13 to line#20) for further validity check.

The validity check happens from line#21 to line#33. It

starts by checking if we can skip the pixel combination based

on the reason mentioned above. Therefore, a combination

e in Sk will not be processed further if e is a subset of

any valid combination e′ in S. If e cannot be skipped, the

location estimation continues as follows. The set of cameras

rest (possibly empty) are first retrieved that do not appear in

e. Since it is implied that the lon/lat coordinate underlying

e is invisible in the cameras rest, the spatial intersection r
from e is then refined by taking the difference between r
and the monitored areas of cameras in rest. Afterwards, if

the refined r is a MultiPolygon mPoly, the centroid points

of child polygons in mPoly are added to the final result;

otherwise, the centroid point of the refined r is added to the

final result. Lastly, the final result C is returned as the set

of estimated lon/lat coordinates for ships. An overview of the

proposed methodology in shown in Fig. 1.

There are two cases in which Algorithm 2 may not return

a correct number of coordinates. The first case happens when

there are two ships s1, s2 in camera views and the pixels

for s1 is a subset of the pixels for s2 or the other way

around. As a result, either s1 or s2 will be missed due to

the technique to avoid repeated processing in Algorithm 2.

However, experiments in Section V will show that this case

happens rarely. The second case happens when the polygons

for pixels from different cameras intersect with each other but

the pixel combination does not correspond to a ship in camera

views. These undesired intersections thus make Algorithm 2

return more coordinates as results.

V. EMPIRICAL STUDIES

This section will conduct experiments to investigate how

the location estimation results by MCbSLE are affected by

various factors (different ports, number of cameras, distance

between cameras, and camera headings) and thereby answer

mainly two questions:

1) How spatially close are our estimated locations w.r.t. the

ship locations in the ground truth?

2) Can our method return the correct number of ship loca-

tions as in the ground truth?

At a timestamp t, the ground truth Ct is the set of lon/lat

coordinates of the ships in the camera views.

It is worth noting that no previous study is suitable as

baseline for comparison due to the following reasons: (1) the

methods based on matrix transformation (e.g. [16], [27]) can

only work with one camera; (2) the only previous study that

uses multiple cameras for ship location estimation relies on

manually-chosen corresponding points across different cam-

eras [28], so it is not clear how the approach can be run

automatically in real scenarios.

113

TABLE I. Parameters in different multi-camera settings

name cam1.θH cam2.θH cam3.θH (cam1.lon, cam1.lat) (cam2.lon, cam2.lat) (cam3.lon, cam3.lat)
Copenhagen-2c-1km 68◦ 68◦

- (12.635886, 55.687784) (12.629929, 55.696112) -
Copenhagen-2c-1km-30d 53◦ 83◦
Copenhagen-2c-2km 80◦ 80◦

- (12.629453, 55.697396) (12.623927, 55.715087) -
Copenhagen-2c-2km-30d 65◦ 95◦
Copenhagen-3c-1km 71◦ 71◦ 71◦

(12.639732, 55.680441) (12.634555, 55.688933) (12.629377, 55.697425)
Copenhagen-3c-1km-30d 41◦ 71◦ 101◦
Copenhagen-3c-2km 71◦ 71◦ 71◦

(12.639134, 55.680495) (12.628779, 55.697479) (12.618414, 55.714463)
Copenhagen-3c-2km-30d 41◦ 71◦ 101◦
Skagen-2c-1km 168◦ 168◦

- (10.585117, 57.713291) (10.601528, 57.715157) -
Skagen-2c-1km-30d 153◦ 183◦
Skagen-2c-2km 153◦ 153◦

- (10.575398, 57.714702) (10.605303, 57.722851) -
Skagen-2c-2km-30d 138◦ 168◦
Skagen-3c-1km 153◦ 153◦ 153◦

(10.575320, 57.714657) (10.590271, 57.718732) (10.605225, 57.722806)
Skagen-3c-1km-30d 123◦ 153◦ 183◦
Skagen-3c-2km 145◦ 145◦ 145◦

(10.562887, 57.709338) (10.590378, 57.719635) (10.617884, 57.729926)
Skagen-3c-2km-30d 115◦ 145◦ 175◦

(a) C-2c-1km (b) C-2c-1km-30d (c) C-2c-2km (d) C-2c-2km-30d (e) C-3c-1km (f) C-3c-1km-30d (g) C-3c-2km (h) C-3c-2km-30d

(i) S-2c-1km (j) S-2c-1km-30d (k) S-2c-2km (l) S-2c-2km-30d (m) S-3c-1km (n) S-3c-1km-30d (o) S-3c-2km (p) S-3c-2km-30d
Fig. 3. The monitored area of each multi-camera setting: “C” (“S”) is short for Copenhagen (Skagen); three cameras are colored differently.

A. Setup

Datasets. The input of our algorithm is a set of pixel

sets, and in real scenarios this input should come from ship

detection results on video data. However, to the best of our

knowledge, there is no public multi-camera video dataset that

monitors ship traffic at the same time and from different angles

in the literature. Therefore, this work uses “virtual cameras”

and simulates the images using AIS data as follows.

Some pre-processing steps are first applied to AIS data:

records with invalid coordinates are removed, then for the

same ship, records with duplicate timestamps are also re-

moved. Next, suppose the monitored region under a multi-

camera setting is R, the algorithm input can thus be generated

through position interpolation for each ship in AIS data. Given

a ship s, interpolation is performed for each timestamp t
between the start timestamp tsstart and the end timestamp tsend
of s. If the interpolated position locst is located inside R, locst
is added to the set of ground truth coordinates for t. After

processing all ships in AIS data, the set of coordinates Ct
for a timestamp t is used to generate the set of pixel sets

{Pi}. Basically, for each lon/lat coordinate c in Ct, we find

the pixel whose associated spatial polygon contains c for each

camera, and the pixel is then added to {Pi}. The experiments

thereby aim to evaluate how well the proposed approach can

reconstruct Ct from {Pi}.

Without loss of generality, the up-to-date and free Danish

AIS data1 is used in experiments, which is also widely used

in previous studies (e.g. [3], [29], [30]). Specifically, we have

chosen randomly the one-day AIS data on Jan 6, 2024 for the

experiments, and similar results are expected on other days.

Multi-camera settings. Generally, multiple cameras can

be installed around a region in many different ways. For

example, cameras can have different headings and elevations;

distances between cameras can be different; and cameras may

be arranged in a particular shape (e.g. a circle). Therefore, the

actual installation of multiple cameras really depends on the

situation on the spot. In this work, we consider some of the

most important aspects of a multi-camera setting:

1) different ports. Generally, the traffic characteristics differ

from port to port. In this work, two ports are selected for

experiments, namely Copenhagen and Skagen. Copen-

hagen is chosen because nearby ships move in various

directions. Copenhagen sees both ships entering and

leaving itself and ships just passing between the North

Sea and the Baltic Sea. Unlike Copenhagen, Skagen has a

large anchorage area just outside the port, and many ships

stopped in this area, as depicted by the vessel monitoring

service MarineTraffic2. As a result, ships near Skagen do

not move as much as ships near Copenhagen. These two

1https://web.ais.dk/aisdata/
2https://www.marinetraffic.com/

114

ports thus represent different movement characteristics

for the experiments.

2) the number of cameras. In real scenarios, the number of

cameras needed depends on the demand at hand. In this

work, we will compare two choices: two cameras and

three cameras.

3) the distance between cameras. Cameras should be placed

at some distances from each other to achieve a better

coverage of the region of interest. In this work, we will

compare two choices: the distance between two adjacent

cameras is either 1 km or 2 km.

4) camera headings. Depending on the actual situation,

cameras may or may not have the same headings. In this

work, we will compare both cases.

As a result, we designed a total of 16 different multi-camera

settings for experiments. Table I gives a summary of these

settings, and Fig. 3 depicts the monitored area of each setting.

The other irrelevant camera parameters are fixed as follows:

cam.θV = -2◦, cam.height = 40 meters, cam.fovH = 60◦,

cam.fovV = 35.98◦, cam.imgW = 1920, cam.imgH = 1080,

and the max. monitoring distance is set as 10 km.
Implementation. The proposed algorithm is implemented in

Python. For geospatial functionalities, three python libraries

are used: pyproj, shapely, and geopandas. For reproducibility,

the source code is made available in Github3.

longitude

latitude

Fig. 4. Wherever a ship is located inside the blue polygon, the centroid point
c is returned as the estimated ship location. This estimate is more accurate
for the black ship than for the green and red ships. The upper bound of the
distance between c and the real ship location is thus the maximum distance
between c and the boundary points bp1, bp2, bp3, and bp4.

TABLE II. The max. upper bound of distance error (in meters) in different
visibility zones, where zone1 is visible in only one camera; zone2 is

visible in two cameras; and zone3 is visible in three cameras.

name zone1 zone2 zone3
Skagen-2c-1km 919.6 80.06 -
Skagen-2c-1km-30d 919.6 70.88 -
Skagen-2c-2km 919.6 39.62 -
Skagen-2c-2km-30d 919.7 35.66 -
Skagen-3c-1km 919.6 80.38 39.61
Skagen-3c-1km-30d 919.7 73.11 31.41
Skagen-3c-2km 919.7 39.64 19.32
Skagen-3c-2km-30d 919.7 35.13 16.96

B. Analysis on the distance between the estimated coordinates
and the ground truth

For distance analysis, we resort to compute the upper

bound of distance deviations for the returned coordinates as

3https://github.com/songwu0001/MCbSLE

follows. If there is only one ship s in the camera views, a

polygon or a multi-polygon (which happens rarely) will be

generated by the spatial operations on the pixel polygons for

s in Algorithm 2. For one polygon sPoly, our approach will

return its centroid point; and for a multi-polygon mPoly, our

approach will return the centroid point of each polygon poly
contained in mPoly. The real location of s is then expected to

be the centroid point or one of the centroid points. Actually,

for any location in sPoly (mPoly), the proposed approach

will return the same centroid(s) as estimates. In other words,

wherever the ship s is located inside sPoly (mPoly), the

approach will return the same location estimation. Therefore,

the upper bound of distance error for a centroid c (also

referred to as the precision of location estimation in this

work) can be computed as follows based on the polygon poly
where c comes from:

upper bound(c) = max(distance(c, bp))

where bp is a boundary point of poly and Fig. 4 gives an

example for illustration. The spatial distribution of the upper

bound of distance error is then approximated as follows: the

monitored area by each setting is split into grids of size 100

meters by 100 meters, and the grid edges are parallel or

perpendicular to the average heading of cameras. The upper

bound of distance error is then computed for all grid corners.

Fig. 5 illustrates results for the settings near Skagen, and the

results for Copenhagen are omitted because they are nearly

the same. Base on visibility, the monitored area under each

setting is divided into two or three zones: zone1 is visible in

only one camera; zone2 is visible in two cameras; and zone3
is visible in three cameras.

Effect of the number of cameras. Taking “Skagen-3c-1km”

for example, the maximum upper bound of distance error

decreases significantly from 919.6 meters in zone1 to 80.38

meters in zone2 and 39.61 meters in zone3. It means that

using more cameras can effectively reduce the uncertainty for

ship location estimation.

Effect of the distance between cameras. Taking “Skagen-

2c-1km” and “Skagen-2c-2km” for example, the maximum

upper bound of distance error in zone2 decreases from 80.06

meters to 39.62 meters. This can possibly be explained as

follows: increasing the distance between cameras makes angle

differences larger between polygons from different cameras,

so the result of spatial intersection is a more regular polygon

rather than a needle-like polygon. The upper bound of distance

error is thus decreased.

Effect of the camera headings. Taking “Skagen-3c-2km”

and “Skagen-3c-2km-30d” for example, the maximum upper

bound of distance error decreases slightly from 39.64 meters

to 35.13 meters in zone2 and from 19.32 meters to 16.96

meters in zone3. Although not as salient as in the previous

paragraph, this can probably be explained by the same reason

regarding the angle difference between intersecting polygons.

To sum up, Fig. 5 shows that using multiple cameras can

significantly reduce the uncertainty in ship location estimation

115

(a) Skagen-2c-1km (b) Skagen-2c-1km-30d (c) Skagen-2c-2km (d) Skagen-2c-2km-30d

(e) Skagen-3c-1km (f) Skagen-3c-1km-30d (g) Skagen-3c-2km (h) Skagen-3c-2km-30d
Fig. 5. The spatial distribution of the upper bound of distance error under multi-camera settings near Skagen.

Fig. 6. The percentage of timestamps between the four classes aggregated
separately for each port

and gives accurate location estimates. Also note that the

closer a point is to the cameras, the smaller uncertainty is

expected for location estimation. Therefore, a multi-camera

setting should be properly designed such that zone1 mostly

corresponds to pixels with larger y values. Besides that,

visualizations as in Fig. 5 can serve as a useful tool for

maritime authorities to inspect the expected precision of

location estimation under any multi-camera setting. In this

way, maritime authorities can perform simulation-first analysis

before deploying a new setup of cameras for tracking ships.

Fig. 7. The percentage of timestamps between the four classes aggregated
separately using the number of cameras

Fig. 8. The percentage of timestamps between the four classes aggregated
separately by the distance between cameras

Fig. 9. The percentage of timestamps between the four classes aggregated
separately based on camera headings

C. Analysis on the number of returned coordinates

Besides the precision of location estimation, it is also de-

sired that MCbSLE can return a correct number of coordinates

as in the ground truth.

Table III shows quartiles for the number of visible ships

over time, which is aggregated separately for settings near

Copenhagen and settings near Skagen. For Copenhagen, the

number of visible ships ranges from 1 to 9, whereas for Skagen

it ranges from 1 to 25. Therefore, more ships seem to appear

simultaneously in Skagen than in Copenhagen. This can be

116

TABLE III. Statistics on the number of visible ships over time

min. 1st quartile median 3rd quartile max.
Copenhagen 1 2 3 4 9
Skagen 1 12 15 19 25

Fig. 10. The percentage of timestamps between the four classes aggregated
separately for each group of the number of visible ships

explained by the fact that there is no large anchorage area near

Copenhagen as near Skagen, so ships passing Copenhagen

only appear in camera views for a shorter time. Therefore,

both ports together represent the diversity of algorithm input.

Under a multi-camera setting S and at a timestamp t, the

number of visible ships in S is numtruth, and the number

of returned coordinates (ships) is numpred. The experiment

results are thus a list of quadruples (S, t, numtruth, numpred).
It is desired that numpred should be as close to numtruth

as possible. Next, we will investigate how the deviation

numpred − numtruth is affected by the four dimensions in

the 16 multi-camera settings. To facilitate analysis, the value

of numpred − numtruth is divided into four classes:

• “less points” means some coordinates are missed by our

approach, i.e. numpred < numtruth.

• “the same” means our approach returns the same number

of coordinates as in the ground truth, i.e. numpred =
numtruth. Therefore, the percentage of this class in the

results can be considered as the accuracy of MCbSLE
for the number of coordinates.

• “1 or 2 more points” means our approach returns slightly

more points than in the ground truth, i.e. numpred −
numtruth = 1 or 2. This case can still be considered

acceptable.

• “>= 3 more points” means our approach returns signifi-

cantly more point than in the ground truth, i.e. numpred−
numtruth ≥ = 3. This case should be avoided as much

as possible.

Effect of ports. The 16 settings are divided into two groups

based on which port is involved. Fig. 6 shows the results for

each group. It is clear that for the 1st group, our approach

almost always returns the correct number of points (99.98%

accuracy). In contrast, the accuracy for the 2nd group is only

55.18%. Such a large difference shows that the accuracy is

mostly affected by the number of visible ships in camera

views. However, only 1 or 2 additional points are returned

around 37% of the time, which is not that bad. For both groups,

the percentage for the class “less points” is pretty low (below

1%), meaning that the case of missing points happens rarely

in practice and is thus not a main issue.

Effect of the number of cameras. The 16 settings are

divided into two groups based on the number of cameras

used. Fig. 7 shows the results for each group. Overall, the

distributions for each group are similar. This can be explained

as follows: on one hand, the addition of a 3rd camera can

reduce the number of undesired intersections caused by two

pixels; on the other hand, a 3rd camera also leads to more

polygons involved in computation, increasing the probability

of (undesired) intersections. As a result, these two factors

cancel each other, and adding more cameras thus does not

necessarily increase the accuracy in the number of coordinates.

Effect of the distance between cameras. The 16 settings

are divided into two groups based on the distance between

cameras. Fig. 8 shows the results for each group. The accuracy

for the 1st group is about 18% higher than the second

group (86% v.s. 68%). The probable reason is that when

increasing the distance between cameras, the angle differences

between polygons from different cameras tend to be larger,

thus increasing the probability of undesired intersections.

Effect of the camera headings. The 16 settings are divided

into two groups based on whether all cameras have the same

heading. Fig. 9 shows the results for each group. The accuracy

for the 1st group is about 8% higher than the second group

(81% v.s. 73%). For the same reason, this may be caused by

the larger angle differences between polygons from different

cameras.

Effect of the number of visible ships. The analysis in

“Effect of ports” shows that the accuracy is largely affected

by the number of ships in the ground truth. For further

elaboration, Fig. 10 depicts the distributions between the four

classes against the number of ships in the ground truth. In Fig.

10, the different number of visible ships are divided into five

groups: [1,5], [6,10], [11,15], [16,20], and [21, 25]. Obviously,

the accuracy gradually decreases from 99.9% in the 1st group

to 28% in the 5th group, whereas the percentage for the class

“1 or 2 more points” increases gradually from 0.008% in

the 1st group to 58.9% in the 5th group. Another important

observation is that the percentage for the class “1 or 2 more
points” is significantly higher than the class “>= 3 more
points” for all the five groups. This means that if an incorrect

number of coordinates are returned, our approach will only

return 1 or 2 more coordinates most of the time.

To sum up, the above analysis reveals the following insights:

(1) it happens rarely that our approach returns a less number

of coordinates than in the ground truth; (2) the accuracy of

MCbSLE is mostly affected by the number of visible ships

in camera view(s); and (3) the accuracy can grow by properly

decreasing the distance between cameras and angle differences

between camera headings.

VI. CONCLUSION

In this work, we propose MCbSLE , an algorithm that can

estimate real-world ship locations using video data from multi-

ple cameras. MCbSLE considers the uncertainty in coordinate

117

conversion by mapping a pixel coordinate to a spatial polygon.

Therefore, the precision of location estimation by MCbSLE
can be significantly improved through intersection of multiple

polygons. Experiments are conducted using a one-day AIS

trajectory dataset under 16 carefully designed multi-camera

settings. Results show that using multiple cameras enhances

the precision of location estimation by one order of magnitude

compared with using one camera. The estimated ship locations

can be used in many ways, such as identifying small or “dark”

ships without AIS signals, fusing with other data sources

for more robust ship tracking, etc. Since MCbSLE does not

directly deal with video data, MCbSLE can be run whenever

the input pixel sets are available, regardless of how they are

generated from video data. It is envisioned that MCbSLE can

be implemented in major harbors and near crucial shipping

channels, such as Shanghai, Singapore, the Strait of Gibraltar,

and the English Channel.

For future work, several directions can be explored. For

example, a method would be desired that can automatically

design the optimal multi-camera setting under a specific

surveillance scenario. Additionally, this work assumes the ship

targets in video data have already been perfectly detected, so it

is also interesting to investigate how this work can be extended

to work with less accurate detection results on video data.

ACKNOWLEDGMENT

This publication has been developed under the framework

of the “Data Engineering for Data Science” (DEDS) project

that has received funding from the European Union’s Horizon

2020 programme (call identified: H2020-MSCA-ITN-EJD-

2020) under grant agreement No 955895.

REFERENCES

[1] D. Yang, L. Wu, S. Wang, H. Jia, and K. X. Li, “How big data enriches
maritime research–a critical review of automatic identification system
(ais) data applications,” Transport Reviews, vol. 39, no. 6, pp. 755–773,
2019.

[2] L. Eljabu, M. Etemad, and S. Matwin, “Spatial clustering method of
historical ais data for maritime traffic routes extraction,” in 2022 IEEE
International Conference on Big Data (Big Data), 2022, pp. 893–902.

[3] S. Wu, E. Zimányi, M. Sakr, and K. Torp, “Semantic segmentation of
ais trajectories for detecting complete fishing activities,” in 2022 23rd
IEEE International Conference on Mobile Data Management (MDM).
IEEE, 2022, pp. 419–424.

[4] E. Chondrodima, N. Pelekis, A. Pikrakis, and Y. Theodoridis, “An
efficient lstm neural network-based framework for vessel location
forecasting,” IEEE Transactions on Intelligent Transportation Systems,
vol. 24, no. 5, pp. 4872–4888, 2023.

[5] S. Wu, K. Torp, M. Sakr, and E. Zimanyi, “Evaluation of vessel CO2

emissions methods using ais trajectories,” in Proceedings of the 18th
International Symposium on Spatial and Temporal Data (SSTD). ACM,
2023, pp. 65–74.

[6] Y. Zhou, W. Daamen, T. Vellinga, and S. P. Hoogendoorn, “Ship
classification based on ship behavior clustering from ais data,” Ocean
Engineering, vol. 175, pp. 176–187, 2019.

[7] Z. Wei, X. Xie, and X. Zhang, “AIS trajectory simplification algorithm
considering ship behaviours,” Ocean Engineering, vol. 216, p. 108086,
2020.

[8] I. Kontopoulos, K. Chatzikokolakis, D. Zissis, K. Tserpes, and
G. Spiliopoulos, “Real-time maritime anomaly detection: detecting in-
tentional ais switch-off,” International Journal of Big Data Intelligence,
vol. 7, no. 2, pp. 85–96, 2020.

[9] K. Bereta, K. Chatzikokolakis, and D. Zissis, “Maritime reporting
systems,” Guide to Maritime Informatics, pp. 3–30, 2021.

[10] I. Kontopoulos, G. Spiliopoulos, D. Zissis, K. Chatzikokolakis, and
A. Artikis, “Countering real-time stream poisoning: An architecture for
detecting vessel spoofing in streams of ais data,” in 2018 IEEE 16th
Intl Conf on Dependable, Autonomic and Secure Computing, 2018, pp.
981–986.

[11] H. Park, S.-H. Ham, T. Kim, and D. An, “Object recognition and tracking
in moving videos for maritime autonomous surface ships,” Journal of
Marine Science and Engineering, vol. 10, no. 7, p. 841, 2022.

[12] Y. Guo, R. W. Liu, J. Qu, Y. Lu, F. Zhu, and Y. Lv, “Asynchronous
trajectory matching-based multimodal maritime data fusion for vessel
traffic surveillance in inland waterways,” IEEE Transactions on Intelli-
gent Transportation Systems, 2023.

[13] M. H. Zwemer, R. G. Wijnhoven, and P. H. de With, “Ship detection in
harbour surveillance based on large-scale data and cnns.” in VISIGRAPP
(5: VISAPP), 2018, pp. 153–160.

[14] W. Man and L. Zhiyong, “The information fusion based on ais and video
data,” in 2016 5th International Conference on Computer Science and
Network Technology (ICCSNT). IEEE, 2016, pp. 336–339.

[15] E. Gülsoylu, P. Koch, M. Yıldız, M. Constapel, and A. P. Kelm, “Image
and ais data fusion technique for maritime computer vision applications,”
arXiv preprint arXiv:2312.05270, 2023.

[16] Z. Huang, Q. Hu, Q. Mei, C. Yang, and Z. Wu, “Identity recognition
on waterways: A novel ship information tracking method based on
multimodal data,” The Journal of Navigation, vol. 74, no. 6, pp. 1336–
1352, 2021.

[17] R. W. Liu, Y. Guo, J. Nie, Q. Hu, Z. Xiong, H. Yu, and M. Guizani, “In-
telligent edge-enabled efficient multi-source data fusion for autonomous
surface vehicles in maritime internet of things,” IEEE Transactions on
Green Communications and Networking, vol. 6, no. 3, pp. 1574–1587,
2022.

[18] A. Graser, “An exploratory data analysis protocol for identifying prob-
lems in continuous movement data,” Journal of Location Based Services,
vol. 15, no. 2, pp. 89–117, 2021.

[19] Ø. K. Helgesen, A. Stahl, and E. F. Brekke, “Maritime tracking with
georeferenced multi-camera fusion,” IEEE Access, vol. 11, pp. 30 340–
30 359, 2023.

[20] N. Wawrzyniak, T. Hyla, and A. Popik, “Vessel detection and tracking
method based on video surveillance,” Sensors, vol. 19, no. 23, 2019.

[21] J. Terven and D. Cordova-Esparza, “A comprehensive review of yolo:
From yolov1 to yolov8 and beyond,” arXiv preprint arXiv:2304.00501,
2023.

[22] C. Li, L. Li, H. Jiang, K. Weng, Y. Geng, L. Li, Z. Ke, Q. Li, M. Cheng,
W. Nie et al., “Yolov6: A single-stage object detection framework for
industrial applications,” arXiv preprint arXiv:2209.02976, 2022.

[23] Z. Ge, S. Liu, F. Wang, Z. Li, and J. Sun, “Yolox: Exceeding yolo series
in 2021,” arXiv preprint arXiv:2107.08430, 2021.

[24] Z. Jiang, L. Su, and Y. Sun, “Yolov7-ship: A lightweight algorithm
for ship object detection in complex marine environments,” Journal
of Marine Science and Engineering, vol. 12, no. 1, 2024. [Online].
Available: https://www.mdpi.com/2077-1312/12/1/190

[25] J. Qu, R. W. Liu, Y. Guo, Y. Lu, J. Su, and P. Li, “Improving maritime
traffic surveillance in inland waterways using the robust fusion of ais
and visual data,” Ocean Engineering, vol. 275, p. 114198, 2023.

[26] Y. Lu, H. Ma, E. Smart, B. Vuksanovic, J. Chiverton, S. R. Prabhu,
M. Glaister, E. Dunston, and C. Hancock, “Fusion of camera-based
vessel detection and ais for maritime surveillance,” in 2021 26th In-
ternational Conference on Automation and Computing (ICAC). IEEE,
2021, pp. 1–6.

[27] B. Carrillo-Perez, S. Barnes, and M. Stephan, “Ship segmentation and
georeferencing from static oblique view images,” Sensors, vol. 22, no. 7,
p. 2713, 2022.

[28] F. A. Palmieri, F. Castaldo, and G. Marino, “Harbour surveillance with
cameras calibrated with ais data,” in 2013 IEEE Aerospace Conference.
IEEE, 2013, pp. 1–8.

[29] P. W. Anita Graser and M. Dragaschnig, “The m³ massive movement
model: a distributed incrementally updatable solution for big movement
data exploration,” International Journal of Geographical Information
Science, vol. 34, no. 12, pp. 2517–2540, 2020.

[30] A. S. Andersen, A. D. Christensen, P. Michaelsen, S. Gjela, and
K. Torp, “Ais data as trajectories and heat maps,” in Proceedings of the
29th International Conference on Advances in Geographic Information
Systems, 2021, pp. 431–434.

118

